PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An eco-friendly strategy using flax/polylactide composite to tackle the marine invasive sponge Celtodoryx ciocalyptoides (Burton, 1935)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Discovered in the 1990s in the river of Etel (Morbihan, France), the marine invasive sponge Celtodoryx ciocalyptoides originating from the Chinese Yellow Sea is now well implanted on concrete pilings inside the Etel marina (Morbihan, France). Novel eco-friendly strategies are urgently needed in order to limit its adhesion on concrete and the risk of dispersal outside the marina. In this study, the anti-settlement and anti-attachment properties of flax/PLA, a biocomposite made of polylactide reinforced with flax fibres, were evaluated on sponge propagules' behaviour. First, flax/PLA panels were immersed into the Etel marina for six years. The coverage onto PLA panels of marine invertebrates was estimated twice a year. In a second step, PLA panels were used as artificial support for invasive sponge transplants. In comparison, specimens were transplanted in mesh bags. Sponge weight increase was measured twice a year. Results indicated that the occurrence of the invasive sponge was delayed for two years on biocomposite in comparison with concrete. At the end of the six-year study, macrofouling by marine invertebrates did not exceed 70% of the surface of the panels and no C. ciocalyptoides specimens were observed. Once transplanted on PLA panels, sponge specimens were able to survive the first year without growing. After two years, none of the transplants survived while specimens in mesh bags increased their weight by 100%. These findings highlight the potential interest of biocomposite in the development of coastal and marine infrastructures.
Czasopismo
Rocznik
Strony
218--226
Opis fizyczny
Bibliogr. 40 poz., fot., wykr.
Twórcy
  • University Bretagne-Sud, Lorient, France
  • University Bretagne-Sud, Lorient, France
Bibliografia
  • [1] Ariyapitipun, T., Mustapha, A., Clarke, A. D., 1999. Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. J. Food Protect. 62 (8), 913-920, http://dx.doi.org/10.4315/0362-028X-62.8.913.
  • [2] Berno, A., Dancie, C., Pinsivy, L., Corthésy, D., Breton, G., 2016. First observation of the alien and invasive sponge Celtodoryx ciocalyptoides (Burton, 1935) (Porifera: Coelosphaeridae) in the port of Le Havre (English Channel). Hydroécol. Appl. 20, 131-144, (in French), https://doi.org/10.1051/hydro/2016002.
  • [3] CDRR (California Department of Resources Recycling and Recovery), 2012. PLA and PHA Biodegradation in the Marine Environment, http://www.calrecycle.ca.gov/publications/Documents/1435%5C20121435.pdf, (accessed 12.12.17).
  • [4] Farah, S., Anderson, D. G., Langer, R., 2016. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv. Drug Deliv. Rev. 107, 367-392, http://dx.doi.org/10.1016/j.addr.2016.06.012.
  • [5] Faÿ, F., Linossier, I., Legendre, G., Vallée-Réhel, K., 2008. Microencapsulation and antifouling coatings: development of poly (lactic acid) microspheres containing bioactive molecules. Macromol. Symp. 272, 4551, http://dx.doi.org/10.1002/masy.200851205.
  • [6] Firth, L. B., Browne, K. A., Knights, A. M., Hawkins, S. J., Nash, R., 2016. Eco-engineered rock pools: a concrete solution to biodiversity loss and urban sprawl in the marine environment. Environ. Res. Lett. 11 (9), 094015, http://dx.doi.org/10.1088/1748-9326/11/9/094015.
  • [7] Gentric, C., Sauleau, P., 2016. Distribution, abundance and pollution tolerance of the marine invasive sponge Celtodoryx ciocalyptoides (Burton, 1935) in the Etel river. Cah. Biol. Mar. 57, 57-64, http://dx.doi.org/10.21411/CBM.A.7079EADE.
  • [8] Glasby, T. M., Connell, S. D., Holloway, M. G., Hewitt, C. L., 2007. Non-indigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar. Biol. 151 (3), 887-895, http://dx.doi.org/10.1007/s00227-006-0552-5.
  • [9] Hakkarainen, M., Karlsson, S., Albertsson, A. C., 2000. Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms — low molecular weight products and matrix changes. Polymer 41 (7), 2331-2338, http://dx.doi.org/10.1016/S0032-3861(99)00393-6.
  • [10] Hamad, K., Kaseem, M., Yang, H. W., Deri, F., Ko, Y. G., 2015. Properties and medical applications of polylactic acid: a review. Express Polym. Lett. 9 (5), 435-455, http://dx.doi.org/10.3144/expresspolymlett.2015.42.
  • [11] Henkel, D., Janussen, D., 2011. Redescription and new records of Celtodoryx ciocalyptoides (Demospongiae: Poeciloscerida) — a sponge invader in the north east Atlantic Ocean of Asian origin? J. Mar. Biol. Ass. U.K. 91 (2), 347-355, http://dx.doi.org/10.1017/S0025315410001487.
  • [12] Ishimaru, N., Tsukegi, T., Wakisaka, M., Shirai, Y., Nishida, H., 2012. Effects of poly(L-lactic acid) hydrolysis on attachment of barnacle cypris larvae. Polym. Degrad. Stab. 97 (11), 2170-2176, http://dx.doi.org/10.1016/j.polymdegradstab.2012.08.012.
  • [13] Jeon, H. J., Kim, M. N., 2013. Biodegradation of poly (L-lactide) (PLA) exposed to UV irradiation by a mesophilic bacterium. Int. Biodeterior. Biodegrad. 85, 289-293, http://dx.doi.org/10.1016/j.ibiod.2013.08.013.
  • [14] Karjomaa, S., Suortti, T., Lempiäinen, R., Selin, J. F., Itävaara, M., 1998. Microbial degradation of poly-(L-lactic acid) oligomers. Polym. Degrad. Stab. 59 (1-3), 333-336, http://dx.doi.org/10.1016/S0141-3910(97)00204-8.
  • [15] Le Duigou, A., Davies, P., Baley, C., 2009. Seawater ageing of flax/poly (lactic acid) biocomposites. Polym. Degrad. Stab. 94 (7), 1151-1162, http://dx.doi.org/10.1016/j.polymdegrad-stab.2009.03.025.
  • [16] Le Duigou, A., Bourmaud, A., Davies, P., Baley, C., 2014. Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Eng. 90, 140-148, http://dx.doi.org/10.1016/j.ocea-neng.2014.07.021.
  • [17] Lee, S. H., Kim, I. Y., Song, W. S., 2014. Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol. Res. 22 (6), 657-663, http://dx.doi.org/10.1007/s13233-014-2107-9.
  • [18] Ludwick, J. J., Rossmann, S. N., Johnson, M. M., Edmonds, J. L., 2006. The bacteriostatic properties of ear tubes made of absorbable polylactic acid. Int. J. Pediatr. Otorhinolaryngol. 70 (3), 407-410, http://dx.doi.org/10.1016/j.ijporl.2005.05.025.
  • [19] Mahaut, M.-L., Basuyaux, O., Baudinière, E., Chataignier, C., Pain, J., Caplat, C., 2013. The porifera Hymeniacidon perlevis (Montagu, 1818) as a bioindicator for water quality monitoring. Environ. Sci. Pollut. Res. 20 (5), 2984-2992, http://dx.doi.org/10.1007/s11356-012-1211-7.
  • [20] Matsuda, E., Abe, N., Tamakawa, H., Kaneko, J., Kamio, Y., 2005. Gene cloning and molecular characterization of an extracellular poly (L-lactic acid) depolymerase from Amycolatopsis sp. strain K104-1. J. Bacteriol. 187 (21), 7333-7340, http://dx.doi.org/10.1128/JB.187.21.7333-7340.2005.
  • [21] Mayzel, B., Aizenberg, J., Ilan, M., 2014. The elemental composition of demospongiae from the Red Sea, Gulf of Aqaba. PLOS ONE 9 (4), e95775, http://dx.doi.org/10.1371/journal.pone.0095775.
  • [22] McKenzie, L. A., Johnston, E. L., Brooks, R., 2012. Using clones and copper to resolve the genetic architecture of metal tolerance in a marine invader. Ecol. Evol. 2 (6), 1319-1329, http://dx.doi.org/10.1002/ece3.241.
  • [23] Nakamura, K., Tomita, T., Abe, N., Kamio, Y., 2001. Purification and characterization of an extracellular poly (L-lactic acid) depoly-merase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl. Environ. Microbiol. 67 (1), 345-353, http://dx.doi.org/10.1128/AEM.67.1.345-353.2001.
  • [24] Perez, T., Perrin, B., Carteron, S., Vacelet, J., Boury-Esnault, N., 2006. Celtodoryx girardae gen. nov. sp. nov., a new sponge species (Poecilosclerida: Demospongiae) invading the Gulf of Morbihan (North East Atlantic, France). Cah. Biol. Mar. 47, 205-214, http://dx.doi.org/10.21411/CBM.A.1E48CEBD.
  • [25] Piola, R. F., Dafforn, K. A., Johnston, E. L., 2009. The influence of antifouling practices on marine invasions. Biofouling 25 (7), 633-644, http://dx.doi.org/10.1080/08927010903063065.
  • [26] Pranamuda, H., Tokiwa, Y., Tanaka, H., 1997. Polylactide degradation by an Amycolatopsis sp. Appl. Env. Microbiol. 63 (4), 1637-1640.
  • [27] Qian, P. Y., Lau, S. C. K., Dahms, H. U., Dobretsov, S., Harder, T., 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar. Biotechnol. 9 (4), 399-410, http://dx.doi.org/10.1007/s10126-007-9001-9.
  • [28] Ruiz, G. M., Freestone, A. L., Fofonoff, P. W., Simkanin, C., 2009. Habitat distribution and heterogeneity in marine invasion dynamics: The importance of hard substrate and artificial structure. In: Wahl, M. (Ed.), Marine Hard Bottom Communities. Springer, Berlin-Heidelberg, 321-332, http://dx.doi.org/10.1007/b76710_23.
  • [29] Sakai, K., Kawano, H., Iwami, A., Nakamura, M., Moriguchi, M., 2001. Isolation of a thermophilic poly-L-lactide degrading bacterium from compost and its enzymatic characterization. J. Biosci. Bioeng. 92 (3), 298-300, http://dx.doi.org/10.1016/S1389-1723(01)80266-8.
  • [30] Sukkhum, S., Tokuyama, S., Tamura, T., Kitpreechavanich, V., 2009. A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. J. Gen. Appl. Microbiol. 55, 459-467, http://dx.doi.org/10.2323/jgam.55.459.
  • [31] Theinsathid, P., Visessanguan, W., Kruenate, J., Kingcha, Y., Keeratipibul, S., 2012. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham. J. Food Sci. 77 (2), M142-M149, http://dx.doi.org/10.1111/j.1750-3841.2011.02526.x.
  • [32] Thouvenin, M., Langlois, V., Briandet, R., Langlois, J. Y., Guerin, P. H., Peron, J. J., Haras, D., Vallee-Rehel, K., 2003. Study of erodable paint properties involved in antifouling activity. Biofouling 19 (3), 177-186, http://dx.doi.org/10.1080/08927014.2003.10382980.
  • [33] Tsuji, H., Suzuyoshi, K., 2002. Environmental degradation of biodegradable polyesters 2, poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in natural dynamic seawater. Polym. Degrad. Stab. 75 (2), 357-365, http://dx.doi.org/10.1016/S0141-3910(01)00239-7.
  • [34] Ulery, B. D., Nair, L. S., Laurencin, C. T., 2011. Biomedical applications of biodegradable polymers. J. Polym. Sci. Pol. Phys. 49 (12), 832-864, http://dx.doi.org/10.1002/polb.22259.
  • [35] Van Soest, R. W. M., de Kluijver, M. J., van Bragt, P. H., Faasse, M., Nijland, R., Beglinger, E. J., de Weerdt, W. H., de Voogd, N. J., 2007. Sponge invaders in Dutch coastal waters. J. Mar. Biol. Ass. U.K. 87 (6), 1733-1748, http://dx.doi.org/10.1017/S002531540705816X.
  • [36] Vaz-Pinto, F., Torrontegi, O., Prestes, A. C. L., Alvaro, N. V., Neto, A. I., Martins, G. M., 2014. Invasion success and development of benthic assemblages: effect of timing, duration of submersion and substrate type. Mar. Environ. Res. 94, 72-79, http://dx.doi.org/10.1016/j.marenvres.2013.12.007.
  • [37] Walczak, M., Brzezinska, M. S., Sionkowska, A., Michalska, M., Jankiewicz, U., Deja-Sikora, E., 2015. Biofilm formation on the surface of polylactide during its biodegradation in different environments. Colloids Surf. B Biointerfaces 136, 340-345, http://dx.doi.org/10.1016/j.colsurfb.2015.09.036.
  • [38] Whalan, S., Webster, N. S., 2014. Sponge larval settlement cues: the role of microbial biofilm in a warming ocean. Sci. Rep. 4, 4072, http://dx.doi.org/10.1038/srep04072.
  • [39] Whalan, S., Abdul Wahab, M. A., Sprungala, S., Poole, A. J., de Nys, R., 2015. Larval settlement: the role of surface topography for sessile coral reef invertebrates. PLoS ONE 10 (2), e0117675, http://dx.doi.org/10.1371/journal.pone.0117675.
  • [40] Zenkiewicz, M., Malinowski, R., Rytlewski, P., Richert, A., Sikorska, W., Krasowska, K., 2012. Some composting and biodegradation effects of physically or chemically crosslinked poly (lactic acid). Polym. Test. 31 (1), 83-92, http://dx.doi.org/10.1016/j.poly-mertesting.2011.09.012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d539eb54-da6e-4041-95c0-e191bd94ce70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.