PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of compressibility of glacial till contaminated with hydrocarbons on the basis of CRL tests results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of CRL research on glacial till contaminated with JET A1 aviation fuel and mineral oil 15W40. The conducted research has shown that the compressibility of fine grained soils contaminated with hydrocarbons during a constant rate of loading tests depends on the physical properties of the soil, properties of oil contaminants, their content in the soil pores as well as the adopted loading velocity. The implemented laboratory test program shows that the contamination of glacial till with hydrocarbons increases their compressibility. Moreover, this research shows that the CRL test method may be recommended in the compressibility research of fine grained soils contaminated with hydrocarbons.
Rocznik
Strony
247--262
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
  • Geoteko Geotechnical Consultants Ltd., ul. Wałbrzyska 14/16, 02-739 Warszawa, Poland
Bibliografia
  • 1. Aboshi H., Yoshikumi H. and Mauryama, S. 1970. Constant Loading Rate Consolidation Test. Soils and Foundations, 10 (1), 43–56.
  • 2. Ahmed, A.A., Abdelrahman, M.T. and Iskander, G.M. 2009. Compressibility of contaminated sand with petroleum oil. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. The Academia and Practice of Geotechnical Engineering, 5–9 October 2009, Alexandria, Egypt, 1, 44–47.
  • 3. ASTM D2435-04. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International: West Conshohocken, PA, USA.
  • 4. ASTM D4186-06. Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading. ASTM International: West Conshohocken, PA, USA.
  • 5. Barański, M. 2000. Strength and deformation behaviour of a glacial till contaminated with petroleum benzene at the site of Petrochemia Płock S.A., Unpublished PhD Thesis, 223 pp. University of Warsaw; Warsaw. [In Polish]
  • 6. Birdi, K.S. 2003. Handbook of Surface and Colloid Chemistry. 2nd ed., 784 pp. CRC Press; Boca Raton/London/New York/Washington.
  • 7. Chen, J., Anandarajah, A. and Inyang, H. 2000. Pore fluid properties and compressibility of kaolinite. Journal of Geotechnical and Geoenvironmental Engineering, 126, 798–807.
  • 8. Di Matteo, L., Bigotti, F. and Ricco, R. 2011. Compressibility of Kaolinitic Clay Contaminated by Ethanol-Gasoline Blends. Journal of Geotechnical and Geoenvironmental Engineering, 137 (9), 846–849.
  • 9. Dobak, P. 2008. Evaluation of consolidation parameters in CL tests; theoretical and practical aspects. Geological Quarterly, 52 (4), 397–410.
  • 10. Dobak, P., Szczepański, T. and Kowalczyk, S. 2015. Load velocity influence on changes of soil consolidation and permeability parameters in CL-type tests. Geological Quarterly, 59 (2), 382–390.
  • 11. Echeverri-Ramirez, Ó., Valencia-Gonzalez, Toscano-Patino, D.E., Ordonez-Munoz, F.A., Arango-Salas, C. and Osorio-Torres, S. 2015. Geotechnical behavior of a tropical residual soil contaminated with gasoline. DYNA, 82 (190), 31–37.
  • 12. Gupta, M.K., Srivastava, R.K. and Singh, A.K. 2009. Hydraulic conductivity and consolidation behavior of lubricant oil contaminated alluvial soils. The International Journal of Earth Sciences and Engineering, 2 (4), 360–366.
  • 13. Hangshemo, H. and Arabani, M. 2022. Geotechnical properties of oil-polluted soil: a review. Environmental Science and Pollution Research International, 29 (22), 32670–32701.
  • 14. Head, K.H. 1992. Manual of Soil Laboratory Testing, 1: Soil Classification and Compaction Tests, 388 pp. Pentech Press; London.
  • 15. Holtz, R.D. and Kovacs, W.D. 1981. An Introduction to Geotechnical Engineering, 733 pp. Prenticle-Hall, New Jersey.
  • 16. Izdebska-Mucha, D. and Trzciński, J. 2007. Microstructural changes in glacial till due to diesel oil pollution. Geologos 11, 463-471. [In Polish].
  • 17. Izdebska-Mucha, D. and Trzciński, J. 2011. Microstructural changes in glacial till due to diesel oil pollution. Biuletyn Państwowego Instytutu Geologicznego, 446, 469–476. [In Polish].
  • 18. Izdebska-Mucha, D. and Trzciński, J. 2021. Clay soil behaviour due to long-term contamination by liquid petroleum fuels: microstructure and geotechnical properties. Bulletin of Engineering Geology and the Environment, 80, 3193–3206.
  • 19. Kaczyński, R. 2017. Geological and engineering conditions in the territory of Poland. 1st edition, 398 pp. Polish Geological Institute-National Research Institute; Warsaw. [In Polish].
  • 20. Karkush, M.O., Zaboon, A.T. and Hussien, H.M. 2013. Studying the effects of contamination on the geotechnical properties of clayey soil. Proceedings of the International Symposium of the International-Society-for-Soil-Mechanics-and-Geotechnical-Engineering, Torino, Italy, 599–608. Taylor & Francis Group; London.
  • 21. Kaya, A. and Fang, H. 2000. The effects of organic fluids on physicochemical parameters of fine-grained soils. Canadian Geotechnical Journal, 37, 943–950.
  • 22. Kaya, A. and Fang, H. 2005. Experimental evidence of reduction in attractive and repulsive forces between clay particles permeated with organic liquids. Canadian Geotechnical Journal, 42, 632–640.
  • 23. Kermani, M. and Ebadi, T. 2012. The Effect of Oil Contamination on the Geotechnical Properties of Fine-Grained Soils. Soil and Sediment Contamination: An International Journal, 21, 655–671.
  • 24. Khamehchiyan, M., Charkhabi, A.H. and Tajik, M. 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89, 220–229.
  • 25. Khosravi, E., Ghasemzadeh, H., Sabour, M.R. and Yazdani, H. 2013. Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology, 166, 11–16.
  • 26. Kościówko, H. and Wyrwicki, R. 1996. Methodology of clay minerals research, 236 pp. Polish Geological Institute-National Research Institute; Warsaw. [In Polish]
  • 27. Kowalczyk, S. 2007. Changes in filtration properties in the consolidation process of green beidelite clays from the Kleszczów Trench. Unpublished PhD Thesis, 170 pp. Faculty of Geology, University of Warsaw; Warsaw. [In Polish]
  • 28. Lambe, T.W. and Whitman, R.V. 1977. Soil mechanics. Vols 1–2, 658 pp. Arkady; Warsaw. [In Polish].
  • 29. Lowe, J., Jonas, E. and Obrican, V. 1969. Controlled gradient consolidation test. Journal of Soil Mechanics & Foundations Division, 95 (SM1, Proc Paper 490), 77–97.
  • 30. Meegoda, N.J. and Ratnaweera, P. 1994. Compressibility of Contaminated Fine-Grained Soils. Geotechnical Testing Journal, 17 (1), 101–112.
  • 31. Nazir, A.K. 2011. Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alexandria Engineering Journal, 50, 331–335.
  • 32. Olchawa, A. and Kumor, M. 2007. Compressibility of organic soils polluted with diesel oil. Archives of Hydro-Engineering and Environmental Mechanics, 54 (4), 299–307.
  • 33. PN-88/B-04481:1988. Building soils – Tests of soil samples. Polski Komitet Normalizacyjny; Warszawa. [In Polish]
  • 34. PN-EN ISO 14688-1:2018-05. Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description. Polski Komitet Normalizacyjny; Warszawa. [In Polish]
  • 35. PN-EN ISO 14688-2:2018-05. Geotechnical investigation and testing – Identification and classification of soil – Part 2: Principles for a classification. Polski Komitet Normalizacyjny; Warszawa. [In Polish]
  • 36. PN-EN ISO 17892-1:2015-02. Geotechnical investigation and testing – Laboratory testing of soil – Part 1: Determination of water content. Polski Komitet Normalizacyjny; Warszawa.
  • 37. PN-EN ISO 17892-2:2015-02. Geotechnical investigation and testing – Laboratory testing of soil – Part 2: Determination of bulk density. Polski Komitet Normalizacyjny, Warszawa.
  • 38. PN-EN ISO 17892-5:2017-05. Geotechnical investigation and testing – Laboratory testing of soil – Part 5: Incremental loading oedometer test. Polski Komitet Normalizacyjny, Warszawa.
  • 39. PN-EN ISO 17892-12:2018-08. Geotechnical investigation and testing – Laboratory testing of soil – Part 12: Determination of liquid and plastic limits. Polski Komitet Normalizacyjny; Warszawa.
  • 40. Rowe, P.W. and Barden, L. 1966. A new consolidation cell. Geo technique, 16 (2), 162–170.
  • 41. Singh, S.K., Srivastava, R.K. and John, S. 2008. Settlement Caracteristics of Clayey Soils Contaminated with Petroleum Hydrocarbons. Soil and Sediment Contamination, 17, 290–300.
  • 42. Sinha, U.N. and Bhargava, S.N. 1991. Variation in differential pore water pressure and particle size at different constant rate of loading in an automated consolidation testing system. Geotechnical Engineering, 22, 247–256.
  • 43. Smith, R.E. and Wahls, H.E. 1969. Consolidation under constant rate of strain. Journal of the Soil Mechanics and Foundations Division, 95 (SM 2). 519–539.
  • 44. Soumaya B. 2005. Setzungsverhalten von Flachgründungen in normalkonsolidierten bindigen Böden, pp. 206 pp. Schriftenreihe Geotechnik Universität; Kassel.
  • 45. Soumaya B., Kempfert H.G. 2010. Verformungsverhalten weicher Böden im spannungsgesteuerten Kompressionsversuch. Bautechnik 87 (2).
  • 46. Srivastava, R.K. and Pandey, V.D. 1998. Geotechnical evaluation of oil contaminated soil. In: Sarsby, R.W. (Ed.), The proceeding of GREEN 2 in the Second International Symposium on Geotechnics Related to the Environment, Kraków, Poland, 1998, 204–209. Thomas Telford; London.
  • 47. Stajszczak, P. 2019. Influence of pollution with petroleum fuels on changes in filtration, consolidation and structural parameters of cohesive soils. Unpublished PhD Thesis, 228 pp. University of Warsaw; Warsaw. [In Polish]
  • 48. Stajszczak, P., Dobak, P. and Gendek, K. 2020. Changes in the consolidation, seepage and microstructural properties of glacial tills estimated in continuous loading tests. Przegląd Geologiczny, 68 (11), 843–852. [In Polish]
  • 49. Stajszczak, P. 2021. Changes in the filtration properties of the sand and clay mixture as a result of contamination with petroleum products in the aspect of mineral insulation barriers. Przegląd Geologiczny, 69 (1), 33–42. [In Polish]
  • 50. Stajszczak, P. and Dobak, P. 2021. Pore pressure changes during consolidation tests with the constant rate of loading and their influence on CL consolidation, as exemplified by selected cohesive soils from central Poland. Przegląd Geologiczny, 69 (12), 873–883. [In Polish]
  • 51. Stajszczak, P. 2022. Compressibility of fine-grained soils from central Poland during constant rate of loading tests. Przegląd Geologiczny, 70 (7), 503–512. [In Polish].
  • 52. Tuncan, A. 1997. Electron Microscopy and Analysis 1997, Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, 511–514 CRC Press, University of Cambridge, 2–5 September 1997.
  • 53. Wiłun, Z. 1987. Outline of Geotechnics. 3rd edition, 723 pp. Wydawnictwo Komunikacji i Łączności; Warszawa. [In Polish]
  • 54. Wissa, A.E.Z., Christian, J.T., Davis, E.H., and Heiberg, S. 1971. Consolidation at constant rate of strain. Journal of Soil Mechanics and Foundations Division, ASCE, 97 (SM10), 1393–1413.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d537ac3c-be59-4298-9e3d-a3308f34d80e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.