PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Features of the surface water oxygen regime in the Ukrainian Polesie Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research analyzed seasonal changes of the oxygen regime and related indicators on the example of water objects of the Ukrainian Polesie Region. The region shows different directions of economic use. Zebrafish (Danio rerio Hamilton–Buchanan) and the Prussian carp (Carassius auratus gibelio Bloch) were used as test objects to investigate survival responses. Dissolved oxygen (DO) concentration in water, pH values and temperatures were determined by standard methods. Based on research results, the main problems were determined pertaining to the oxygen regime of investigated waters, i.e. the increase in temperature and toxicity of the aquatic environment in the summer. A rather dangerous decrease in DO concentration, almost up to the levels of maximum allowable concentration (MAC) (4.10 mg∙dm–3 in group E1 and 6.07 mg∙dm–3 in group E2), was observed in August and it was typical for the reservoirs with a slow water movement. Flowing river waters (group E3) were eliminated due to their better aeration compared to other groups. The correlation analysis based on the presented data revealed a high and average degree of probable correlation between the DO concentration and water temperature, as well as an average degree of correlation with general toxicity determined on sensitive species of D. rerio, and in group E1 on the persistent species C. auratus gibelio as well. The interrelations and equations of the rectilinear regression can be used to predict the oxygen regime of the waters investigated and other surface waters having similar problems.
Wydawca
Rocznik
Tom
Strony
104--110
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Polissia National University, Faculty of Forestry and Ecology, Zhytomyr, Ukraine
  • Polissia National University, Educational and Scientific Center of Ecology and Environmental Protection, Staryi Blvd, 7, Zhytomyr, Zhytomyrs'ka oblast, 10008 Ukraine
  • Polissia National University, Faculty of Forestry and Ecology, Zhytomyr, Ukraine
  • Polissia National University, Faculty of Forestry and Ecology, Zhytomyr, Ukraine
autor
  • Polissia National University, Faculty of Forestry and Ecology, Zhytomyr, Ukraine
Bibliografia
  • AFANASIEV S.A. 2002. Development of European approaches to biological assessment of the state of hydroecosystems and their application to the monitoring of Ukrainian Rivers. Hydrobiological Journal. Vol. 38. No. 4 р. 130–148. DOI 10.1615/HydrobJ.v38.i4.130.
  • АRYSTARKHOVA E.O. 2017a. Ekspres-otsinka toksychnosti vod poverkhnevykh dzherel vodopostachannia z vykorystanniam ryb Danio rerio [Express-assessment of the toxicity of waters from surface water supply sources with the use of Danio rerio]. Fisheries Science of Ukraine. No. 3 (41) p. 17–25. DOI 10.15407/fsu2017.03.017.
  • АRYSTARKHOVA E.O. 2017b. Otsiniuvannia toksychnosti zabrudnenykh amoniakom vod na Сarassius gibelio (Вloch, 1782) metodom «time sampling» [Evaluation of the toxicity of ammonia polluted waters for Сarassius auratus gibelio (Вloch, 1782) by the «time sampling» method]. Fisheries Science of Ukraine. No. 4 (42) p. 33–41. DOI 10.15407/fsu 2017.04.033.
  • АRYSTARKHOVA E.O. 2018. Vplyv amoniaku na formuvannia toksychnosti vod poverkhnevykh dzherel vodopostachannia, vysnachenoi na Сarassius gibelio (Вloch, 1782) [Influence of ammonia on the toxicity forming of waters from the surface sources of water supply determined on Сarassius gibelio (Вloch, 1782)]. Fisheries Science of Ukraine. No. 1 (43) p. 26–35. DOI 10.15407/fsu2018.01.026.
  • BARTNIK A., MONIEWSKI P. 2016. Changes in water quality of a small urban river triggered by deep drainage of a construction site. Journal of Water and Land Development. No. 31 p. 11–22. DOI 10.1515/jwld-2016-0032.
  • BECKER A., KIRCHESCH V., BAUMERT H.Z., FISCHER H., SCHÖL A. 2010. Modeling the effects of thermal stratification on the oxygen budget of an impound river. River Research and Applications. Vol. 26. Iss. 5 p. 572–588. DOI 10.1002/rra.1260.
  • BILYAVSKYI G.О., BUTCHENKO L.І. 2004. Osnovy ekolohii: teoria ta praktykum: navchalnyi posibnyk [Basics of ecology: theory and workshop: Textbook]. Kyiv. Libra. ISBN 966-7035-42-5 pp. 368.
  • DUDNIK S.V., YEVTUSHENKO N.Y. 2013. Vodna toksykologia: osnovni teoretychni polozhennia ta ikhnie praktychne zastosuvannia [Aquatic toxicology: basic theoretical principles and their practical use]. Kyiv. Vydavnytstvo Ukrainskogo fitosotsiologichnogo tsentru. ISBN 978-966-306-176-3 pp. 298.
  • EU Water Framework Directive 2000/60/EC. 2006. Definitions of Main Terms. Kyiv pp. 240.
  • FEDONIUK T.P., FEDONIUK R.H., ROMANCHUK L.D., PETRUK A.A., PAZYCH V.M. 2019. The influence of landscape structure on the quality index of surface waters. Journal of Water and Land Development. No. 43 p. 56–63. DOI 10.2478/jwld-2019-0063.
  • FEDONIUK T.P., FEDONIUK R.H., ZYMAROIEVA A.A., PAZYCH V.M., ARISTARKHOVA E.O. 2020. Phytocenological approach in biomonitoring of the state of aquatic ecosystems in Ukrainian Polesie. Journal of Water and Land Development. No. 44 p. 65–74. DOI 10.24425/jwld.2019.127047.
  • FENT K. 2013. Ökotoxikologie, Umweltchemie – Toxikologie – Ökologie [Ecotoxicology, environmental chemistry – Toxicology – Ecology]. 4 ed. Stuttgart, New York. Georg Thieme Verlag KG. ISBN 9783131693044 pp. 377.
  • FROEHLICHER M., LIEDTKE A., GROH K.J., NEUHAUSS S.C., SEGNER H., EGGEN R.I. 2009. Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquatic Toxicology. Vol. 95. Iss. 4 p. 307–319. DOI 10.1016/j.aquatox.2009.04.007.
  • HUANG Y., SCHMITT F.G. 2014. Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition. Journal of Marine. Systems. Vol. 130 p. 90–100. DOI 10.1016/j.marsys.2013.06. 007.
  • KLYMENKO M.O., BIEDUNKOVA O.O., KLYMENKO O.M., STATNYK I.I. 2018. Influence of river water quality on homeostasis characteristics of cypriniform and perciform fish. Biosystems Diversity. Vol. 26. No. 1 p. 16–23. DOI 10.15421/011803.
  • LASHEEN M.R., ABDEL-GAWAD F.K., ALANENY A.A., EL-BARY H.M.H.A. 2012. Fish as bio indicators in aquatic environmental pollution assessment: a case study in Abu-Rawash area, Egypt. World Applied Sciences Journal. Vol. 19. No. 2 p. 265–275. DOI 10.5829/idosi.wasj.2012.19.02.6485.
  • LOWELL R.B., CULP J.M. 1999. Cumulative effects of multiple effluent and low dissolved oxygen stressors on mayflies at cold temperatures. Canadian Journal of Fisheries and Aquatic Sciences. Vol. 56. No. 9 p. 1624–1630. DOI 10.1139/f99-091.
  • OIKARI A. 2006. Caging techniques field exposures of fish to chemical contaminants. Aquatic Toxicology. Vol. 78. No. 4 p. 370–381. DOI 10.1016/j.aquatox.2006.03.010.
  • ORLOV O.O., FEDONIUK T.P., IAKUSHENKO D.M., DANYLYK I.M., KISH R.YA., ZIMAROIEVA A.A., KHANT G.A. 2021. Distribution and ecological growth conditions of Utricularia australis R. Br. in Ukraine. Journal of Water and Land Development. No. 48 (I–III) p. 32–47. DOI 10.24425/jwld.2021.136144.
  • OSADCHYI В.І. 2001. Osnovni tendentsii formuvannia chimichnoho skladu poverkhnevykh vod Ukrainy u 1995–1999 [Main trends in the formation of the chemical composition of surface waters in Ukraine in 1995–1999]. Scientific Works of the Ukrainian Research Institute of Hydrometeorology. Vol. 48 p. 138–153.
  • OSADCHYI В.І. 2006. Mnogolyetnyaya dinamika i vnutrigodovoye raspryedelenye rastvorionnogo kisloroda v poverkhnostnykh vodakh Ukrainy [Long-term dynamics and intra-annual distribution of dissolved oxygen in the surface waters of Ukraine]. Hydrology, hydrochemistry and hydroecology: Materials of ІІІ All-Ukrainian Scientific Conference. Kyiv. Nica-Center p. 122–123.
  • OSADCHYI В.І., OSADCHA N.M. 2007. Kysnevyi rezhym poverkhnevykh vod v Ukraini [Oxygen regime of surface waters in Ukraine]. Scientific Works of the Ukrainian Research Institute of Hydrometeorology. Vol. 256 p. 265–285.
  • PENA M.A., KATSEV S., OGUZ T., GILBERT D. 2010. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences. Vol. 7. Iss. 3 p. 933–957. DOI 10.5194/bg-7-933-2010.
  • RADIĆ S., GREGOROVIĆ G., STIPANIČEV D., CVJETKO P., ŠRUT M., VUJČIĆ V., OREŠČANIN V., KLOBUČAR G.I. 2013. Assessment of surface water in the vicinity of fertilizer factory using fish and plants. Ecotoxicology and Environmental Safety. Vol. 96 p. 32–40. DOI 10.1016/j.ecoenv.2013.06.023.
  • RAJWA-KULIGIEWICZ A., BIALIK R.J., ROWIŃSKI P.M. 2015. Dis-solved oxygen and water temperature dynamics in lowland rivers over various timescales. Journal of Hydrology and Hydromechanics. Vol. 63. Iss. 4 p. 353–363. DOI 10.1515/johh-2015-0041.
  • ROMANCHUK L., FEDONYUK T., PAZYCH V., FEDONYUK R., KHANT G., PETRUK А. 2018. Assessment of the stability of aquatic eco-systems development on the basis of indicators of the macro-phytes fluctuating asymmetry. Eastern-European Journal of Enterprise Technologies. Vol. 4. No. 11 p. 54–61. DOI 10.15587/1729-4061.2018.141055.
  • ROMANCHUK L.D., FEDONYUK T.P., FEDONYUK R.G. 2017. Model of influence of landscape vegetation on mass transfer processes. Biosystems Diversity. Vol. 25. No. 3 p. 203–209. DOI 10.15421/011731.
  • ROMANENKO V.D. 2004. Osnovy hydroecologii [Basics of hydroe-cology]. Kyiv. Genesa. ISBN 966-504-358-7 pp. 664.
  • SCARDI M., TANCIONI L., CATAUDELLA S. 2006. Monitoring methods based on fish. In: Biological monitoring of rivers: Application and perspectives. Eds. G. Ziglio, G. Flaim, M. Siligardi. Sussex. Wiley. ISBN 978-0470863763 pp. 486.
  • SCHMITT F., DUR G., SOUSSI S., BRIZARD ZONGO S. 2008. Statistical properties of turbidity, oxygen and pH fluctuations in the Seine River estuary (France). Physica A.: Statistical Mechanics and its Applications. Vol. 387. Iss. 26 p. 6613–6623. DOI 10.1016/ j.physa.2008.08.026.
  • SNIZHKO S.І. 2001. Otsinka ta prohnosuvanniya yakosti pryrodnykh vod: pidruchnyk [Assessment and forecasting of natural waters quality: Textbook]. Kyiv. Nica-Center. ISBN 966-521-078-5 pp. 264.
  • SPELLERBERG I.F. 2005. Monitoring ecological change. Cambridge. Cambridge University Press pp. 412. DOI 10.1017/ CBO9780511614699.
  • SSRN 2.2.4-171-10 «Higiyenichni vymogy do vody pytnoi, prysnachenoi dlya spo vzhyvannya ludynoiu» [State Sanitary rules and norms 2.2.4-171-10 «Hygiene requirements to drinking water intended for human consumption»].
  • SZCZERBIŃSKA N., GAŁCZYŃSKA M. 2015. Biological methods used to assess surface water quality. Archives of Polish Fisheries. No. 23(4) p. 185–196. DOI 10.1515/aopf-2015-0021.
  • ULITZUR S. LAHAV T., ULITZUR N. 2002. A novel and sensitive test for rapid determination of water toxicity. Environmental Toxicology. Vol. 17. Iss. 3 p. 291–296. DOI 10.1002/tox. 10060.
  • WIECZERZAK M., NAMIEŚNIK J., KUDŁAK B. 2016. Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review. Environment International. Vol. 94 p. 341–361. DOI 10.1016/j.envint.2016.05.017.
  • ZAPOLSKYI А.К., SHUMYGAI I.V. 2015. Okhorona vod vid vysnazhenniya i sabrudnenniya [Protection of drinking water from depletion and pollution]. Agroecological Journal. No. 3 p. 6–15.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5376f94-3766-4444-ad0a-67460e311ae5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.