"Zeszyty Naukowe Uczelni Jana Wyżykowskiego. Studia z Nauk Technicznych" 2016 (5), s. 65-74 MIROSŁAW BOCIAN, RAFAŁ MECH WOJCIECH MYSZKA, MICHAŁ PRZYBYLSKI Politechnika Wrocławska

Wpływ rekrystalizacji na właściwości tłumiące stopu Fe₇₅Zr₄Ti₃B₁₇Cu₁

 (\bullet)

Streszczenie: Uważa się, że tłumienie w przypadku metali o strukturze amorficznej powinno ulec zmianie po ich rekrystalizacji. W niniejszej pracy przedstawiono wyniki badań tego zagadnienia. Badania przeprowadzono na stopie Fe₇₅Zr₄Ti₃B₁₇Cu₁ wykonanym w taki sposób, aby otrzymać materiał o strukturze amorficznej. W celu określenia oczekiwanej zmiany w tłumieniu badanego materiału, przeprowadzono badania polegające na pomiarze wysokości odbicia, dla próbki przed obróbką termiczną i po takiej obróbce. Otrzymane rezultaty pokazały, że względne tłumienie próbki uległo zmniejszeniu po poddaniu jej obróbce cieplnej, tym samym potwierdzając wstępne założenia.

Słowa kluczowe: mechanika eksperymentalna, szkło metaliczne, stop amorficzny, właściwości materiałowe, inżynieria materiałowa.

Influence of recrystallization on damping properties of $Fe_{75}Zr_{4}Ti_{3}B_{17}Cu_{1}$ alloy

Summary: It is expected that damping in amorphous metals changes after their recrystallization. For this purpose a study of this phenomena was investigated. A Fe₇₅Zr₄Ti₃B₁₇Cu₁ alloy was manufactured in very specific conditions to obtain amorphous structure. To determine expected change of damping, a sample in form of a rod was tested for bounce height in controlled conditions before and after heat treatment that changed the material structure. The obtained results indicate a decrease of damping after heat treatment and therefore confirm the initial assumption.

Keywords: experimental mechanics, metallic glass, amorphous alloy, material properties, material science.

1. Wprowadzenie

Struktura wewnętrzna stopów metali ma istotny wpływ na ich właściwości mechaniczne. Obserwujemy to zjawisko już przy tradycyjnej obróbce cieplnej [3, 4, 6]. Obecnie nowoczesne technologie w powiązaniu z odpowiednimi stopami pozwalają nam uzyskać, po przekroczeniu granicznych wartości szybkości chłodzenia, strukturę amorficzną [1]. Struktura taka powinna posiadać ciekawe właściwości mechaniczne [5].

۲

W pracy skupiono się na zbadaniu tłumienia wewnętrznego nowego materiału, które powinno być istotnie mniejsze niż w przypadku materiału o typowej budowie krystalicznej. Badania przeprowadzono dla stopu Fe₇₅Zr₄Ti₃B₁₇Cu₁ o strukturze częściowo amorficznej z zalążkiem struktury nanokrystalicznej, co zostało szerzej pokazane w dalszej części pracy, oraz dla materiału po wstępnej obróbce cieplnej.

()

W celu określenia struktury wewnętrznej materiału po jego wytworzeniu konieczne było przeprowadzanie badań podstawowych, dopiero w dalszej kolejności możliwe było zrealizowanie badań mających na celu zbadanie różnic w tłumieniu wewnętrznym wytworzonego materiału przed i po obróbce cieplnej.

2. Wytwarzanie materiału

W badaniach wykorzystany został pręt metaliczny wykonany z wykorzystaniem metody szybkiego chłodzenia. W pierwszym kroku należało odmierzyć odpowiednią ilość każdego z pierwiastków stopowych, co było istotne ze względu na to, że każdy z wykorzystanych pierwiastków wpływa w różny sposób na ostateczną postać materiału, w tym na jego lepkość, wytrzymałość, czy pojawienie się naprężenia wewnętrznego, wywołanego obróbką termiczną. Po odważeniu wszystkie składniki zostały umieszczone w urządzeniu Arc Melter, które umożliwia przetopienie składników z wykorzystaniem łuku elektrycznego.

Metodyka wytwarzania stopu polegała na kilkukrotnym przetopieniu wszystkich składników w specjalnie przygotowanej matrycy miedzianej, tak aby zapewnić pełną ich homogenizację. Topienie materiału odbywało się w atmosferze ochronnej gazu, jakim był argon. Po kilkukrotnym przetopieniu przygotowany materiał był umieszczany w specjalnym wlewku miedzianym, pod którym znajdowała się miedziana forma chłodzona wodą. Następnie po raz kolejny topiono materiał i w momencie przejścia materiału ze stanu stałego w ciekły następowało jego zassanie do położonej poniżej matrycy. Prędkość z jaką materiał był zasysany do matrycy pozwalała uzyskać strukturę amorficzną materiału, poprzez jego bardzo szybkie przechłodzenie 10⁶K/s. W rezultacie na koniec uzyskano próbkę w formie pręta o średnicy 3 mm i długości 150 mm. Na rysunku 1 przedstawiono zdjęcie rzeczywistej próbki.

Rys. 1. Zdjęcie próbki wykorzystanej w badaniach Źródło: badania własne.

Księga1.indb 66

۲

Wytworzoną próbkę poddano badaniom mającym na celu określenie wielkości tłumienia. Po przeprowadzonych badaniach próbka została poddana obróbce cieplnej polegającej na wygrzaniu jej w piecu o temperaturze 400°C przez 30 min. Zabieg obróbki cieplnej powinien spowodować rozrost ziaren w próbce, a przez to zmianę jej wewnętrznej struktury.

۲

3. Badania podstawowe

Otrzymany stop wymagał w pierwszej kolejności przeprowadzenia badań pozwalających na określenie jego struktury, a przede wszystkim otrzymanie informacji, czy jest on amorficzny. W tym celu wykorzystano dyfraktometr rentgenowski z lampą kobaltową.

Otrzymane wyniki zostały przedstawione na rysunku 2, gdzie można zauważyć, iż otrzymany dyfraktogram różni się od dyfraktogramów charakterystycznych dla materiałów amorficznych [2, 3].

Rys. 2. Dyfraktogram uzyskany dla badanej próbki

W przypadku materiałów amorficznych na dyfraktogramie brak jest refleksów o wyraźnie zaznaczonym ekstremum. Z reguły występuje wypiętrzenie się wykresu dyfraktogramu w stosunkowo dużym zakresie kątowym. Wyniki otrzymane dla wytworzonej próbki pokazały, że materiał ten posiada strukturę częściowo krystaliczną. W celu określenia wielkości kryształów przeprowadzono badanie za pomocą mikroskopu sił atomowych.

۲

Badanie to polegało na zeskanowaniu powierzchni próbki za pomocą bardzo małej sondy, dzięki czemu możliwe było określenie topografii próbki, a co za tym idzie, wielkości kryształów. Na rysunku 3 zaprezentowano wyniki zeskanowania powierzchni próbki o wymiarach 10 x 10 µm w trybie kontaktowym. Za pomocą strzałek zaznaczono struktury nanokrystaliczne.

Rys. 3. Obraz 3D powierzchni próbki, obszar skanowania 10 x 10 µm, strzałki wskazują na struktury nanokrystaliczne

W celu zweryfikowania występowania fazy nanokrystalicznej w materiale przeprowadzono skanowanie za pomocą mikroskopu sił bocznych (LFM).

Obrazy z badania LFM dla wytworzonej próbki zostały przedstawione na rysunku 4. Widać wyraźnie, iż w przypadku przejazdu głowicy w prawo gdzieniegdzie pojawiły się ciemniejsze obszary zaznaczone strzałkami, natomiast te same miejsca w przypadku powrotu głowicy są wyraźnie jasne. Daje to podstawę do stwierdzenia występowania w wytworzonym materiale stref, w których nastąpiła zmiana tarcia poprzez wydzielenie się jednego lub kilku pierwiastków stopowych lub ich niepełną homogenizację, albo występowanie stref o strukturze nanokrystalicznej.

Rys. 4. Obraz powierzchni próbki po (LFM): a) przejazd głowicy w prawo, b) przejazd głowicy w lewo

Księga1.indb 68

W celu weryfikacji czy otrzymane strefy są strukturami nanokrystalicznymi, czy też może wydzieleniem jednego z pierwiastków, przeprowadzono analizę powierzchni za pomocą mikroskopu elektronowego (EDS), pozwalającą na wykonanie szybkiej analizy występowania oraz rozkładu pierwiastków w materiale. Otrzymane wyniki zostały przedstawione na rysunku 5.

۲

Rys. 5. Obraz z mikroskopu elektronowego pow. 8000 x po wykonaniu mapingu przy pomocy (EDS)

69

۲

Obraz z mikroskopu potwierdził również występowanie struktur wielkości rzędu kilkudziesięciu nanometrów, w postaci ciemnych obszarów zaznaczonych na rysunku 5 przy pomocy strzałek. Dodatkowo, analiza wykonanego skanowania powierzchni przy pomocy EDS pokazała, że wchodzące w skład stopu pierwiastki rozkładają się w sposób równomierny. Świadczy to o pełnej homogenizacji składników stopowych w trakcie procesu wytwarzania materiału oraz daje podstawy do przypuszczania, że zauważone obszary są strukturami nanokrystalicznymi materiału.

()

Na podstawie otrzymanych rezultatów stwierdzono, że wytworzony materiał posiada strukturę częściowo amorficzną z obszarami nanokrystalicznym.

4. Określenie właściwości tłumiących materiału

Określenie właściwości tłumiących metalowego pręta o stosunkowo małej średnicy wymagało zestawienia odpowiedniego stanowiska pomiarowego. W celu określenia właściwości tłumiących zdecydowano się wykorzystać prostą ideę, która zakładała zrzucenie pręta dokładnie z tej samej wysokości i sprawdzenie, na jaką wysokość się odbije. W tym celu przygotowano odpowiednie stanowisko, które zostało pokazane na rysunku 6. Stanowisko składało się z szybkiej kamery (pozwalającej uchwycić ruch pręta po odbiciu), szklanej rurki (o średnicy 4 mm) z zaznaczoną skalą oraz uchwytu pozwalającego utrzymać rurę w pionie. Szklana rurka została umieszczona na bardzo twardym podłożu, które nie ulegało ugięciu podczas zrzucania pręta i kolejnych jego odbić. Dodatkowo zapewnio-no również zachowanie tej samej wysokości w przypadku każdego z rzutów.

Rys. 6. Schemat układu pomiarowego z szybką kamerą, szklaną rurką ze skalą oraz próbką

70

Księga1.indb 70

۲

Badanie przeprowadzono kilkukrotnie dla próbki przed obróbką cieplną i po obróbce cieplnej, co pozwoliło na określenie średniej wysokości odbicia oraz zniwelowało wpływ tarcia pręta o ścianki rurki w trakcie ruchu. Prędkość nagrywania szybkiej kamery wynosiła 300 klatek na sekundę, dzięki czemu możliwe było precyzyjne określenie wysokości każdego odbicia. Na rysunkach 7 i 8 przedstawiono przykładowe wyniki dla próbek po pierwszym i drugim odbiciu, przy czym należy pamiętać, że są to maksymalne wysokości odbicia. Na podstawie przeprowadzonego eksperymentu możliwe było określenie względnego tłumienia w próbkach. Polegało to na porównaniu wysokości odbicia po pierwszym odbiciu oraz po drugim odbiciu.

()

Pomiar wysokości odbicia polegał na przeanalizowaniu ruchu pręta klatka po klatce i znalezieniu miejsca, w którym osiągał on maksymalną wysokość odczytywaną ze skali, Rozdzielczość skali wynosiła tylko 1 mm, w związku z czym otrzymane rezultaty mogą posłużyć głównie jako wartości odniesienia dla kolejnych, bardziej dokładnych badań.

Rys. 7. Obrazy próbki przed obróbką cieplną: a) pierwsze i b) drugie odbicie

Dla przedstawionego na rysunku 7 przykładu otrzymana różnica w wysokości pomiędzy pierwszym i drugim odbiciem wyniosła 94 mm, co daje względną różnicę na poziomie 19,35%. Wartość ta możne zostać odniesiona do tłumienia wewnętrznego w materiale, jednak nie jest to właściwa wartość tego tłumienia. W sumie przeprowadzono 20 pomiarów dla próbki przed obróbką cieplną.

Średnia wartość różnicy między oboma odbiciami wynosiła 20,9%. Wszystkie wyniki zostały zebrane w tabeli 1.

۲

۲

Rys. 8. Obrazy próbki po obróbce cieplnej: a) pierwsze i b) drugie odbicie

Tab. 1. W	yniki odbić	dla próbki	przed obróbka	a cieplna
-----------	-------------	------------	---------------	-----------

Lp.	Pierwsze odbicie	Drugie odbicie	Różnica	Względne tłumienie	
1.	498.8	416.8	82.0	16%	
2.	466,8	368,0	98,8	21%	
3.	485,8	391,8	94,0	19%	
4.	394,8	318,0	76,8	19%	
5.	471,3	390,8	80,5	17%	
6.	451,8	341,5	110,3	24%	
7.	447,8	380,8	67,0	15%	
8.	481,8	383,8	98,0	20%	
9.	425,8	358,0	67,8	16%	
10.	479,8	380,8	99,0	21%	
11.	445,8	341,0	104,8	24%	
12.	465,3	379,3	86,0	18%	
13.	456,8	383,8	73,0	16%	
14.	452,8	358,0	94,8	21%	
15.	474,3	359,0	115,3	24%	
16.	461,8	342,5	119,3	26%	
17.	466,8	347,5	119,3	26%	
18.	425,8	321,5	104,3	24%	
19.	457,8	339,0	118,8	26%	
20.	419,3	324,0	95,3	23%	

b)

۲

a)

72

Wpłuw rekrustalizacii na	właściwości	tłumiace s	stopu Fe7	r.Ti_B(Cu.
			· · · / · · / ·	A J 1/	

Lp.	Pierwsze odbicie [mm]	Drugie odbicie Różnica [mm] [mm]		Względne tłumienie	
1.	458,8	393,0	65,8	14%	
2.	507,8	391,0	116,8	23%	
3.	488,8	378,0	110,8	23%	
4.	486,3	425,8	60,5	12%	
5.	523,3	447,3	76,0	15%	
6.	453,3	388,0	65,3	14%	
7.	501,8	425,8	76,0	15%	
8.	353,0	275,5	77,5	22%	
9.	441,8	381,5	60,3	14%	
10.	444,3	332,5	111,8	25%	
11.	453,8	392,0	61,8	14%	
12.	453,8	356,5	97,3	21%	
13.	446,3	343,5	102,8	23%	
14.	442,8	372,5	70,3	16%	
15.	465,3	354,0	111,3	24%	
16.	515,8	435,8	80,0	16%	

Tab.	2.	Wyniki	odbić	dla	próbki	ро	obróbce	cieplnej
------	----	--------	-------	-----	--------	----	---------	----------

Otrzymane rezultaty wyraźnie pokazują zmianę tłumienia wewnętrznego wytworzonego stopu Fe₇₅Zr₄Ti₃B₁₇Cu₂, spowodowaną zmianą struktury wewnętrznej pod wpływem zastosowanej obróbki cieplnej.

5. Podsumowanie

Badania przeprowadzono na stopie Fe₇₅Zr₄Ti₃B₁₇Cu₁ wykonanym w taki sposób, aby otrzymać materiał o strukturze amorficznej. Na podstawie rezultatów z badań podstawowych, do których wykorzystano dyfrakcję rentgenowską, mikroskop sił atomowych oraz bocznych, a także mikroskop elektronowy z EDS, stwierdzono, że wytworzony materiał posiada strukturę częściowo amorficzną z obszarami nanokrystalicznymi.

W celu określenia właściwości tłumiących badanego materiału zdecydowano się wykorzystać prostą ideę, która zakładała zrzucenie pręta dokładnie z tej samej wysokości i sprawdzenie, na jaką wysokość się odbije. Badanie przeprowadzono kilkukrotnie dla

۲

próbki przed obróbką cieplną i po obróbce cieplnej, co pozwoliło na określenie średniej wysokości odbicia oraz zniwelowało wpływ tarcia pręta o ścianki rurki w trakcie ruchu. Dla próbki przed obróbką cieplną względne tłumienie określono na poziomie 20,9%, natomiast po obróbce cieplnej wartość względnego tłumienia wyniosła 18,2%, co pokazuje zmniejszenie tłumienia po zmianie struktury wewnętrznej materiału.

✐

Otrzymane wyniki stanowią uzasadnienie wykonania dalszych badań, które pozwoliłyby na określenie właściwych wartości tłumienia, a tym samym uzyskania informacji nie tylko o jakościowej, ale również ilościowej zmianie tłumienia w materiale.

Literatura

- Gavrilyuk A. A., Semenov A. L., Gavrilyuk A. V., Mokhovikov A. Yu., Zubritsky S. M., and Petrov A. L., Magnetic properties of iron-based amorphous metal wires, "Russian Physics Journal", nr 47, cz. 7, 2004, s. 750–755.
- 2. Larsson O., *Fe-based amorphous powder for soft-magnetic composites*, Master Thesis, Royal Institute of Technology, Stockholm 2013.
- Lee Y. T., Peters M., Wirth G., Effects of thermomechanical treatment on micro-structure and mechanical properties of blended elemental Ti-6AI-4V compacts, "Materials Science and Engineering: A", t. 102, CZ. 1, 1988, s. 105–114.
- 4. Lee Y. T., Welsch G., Young's modulus and damping of Ti₆Al₄V alloy as a function of heat treatment and oxygen concentration, "Materials Science and Engineering: A", t. 128, cz. 1, 1990, s. 77–89.
- Schuh C. A., Hufnagel T. C., Ramamurty U,, Mechanical Behavior of amorphous alloys, "Acta Materialia", nr 55, 2007, s. 4067–4109.
- 6. Zhang Z., Zeng X., Ding W., *The influence of heat treatment on damping response of AZ91D magnesium alloy*, "Materials Science and Engineering: A", t. 392, cz. 1–2, 2005, s. 150–155.

74

۲

 \bigcirc