Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Boundary Layer Ingestion (BLI) fans demonstrate significant potential for reducing fuel consumption in aircraft propulsion. However, BLI introduces an augmented and uneven turbulence intensity profile at the engine inlet, a factor that can significantly influence turbomachinery performance. This paper aims to analyze the turbulence field within a low-speed fan test rig replicating BLI conditions. Inflow distortion was induced using a variable porosity screen, and turbulence intensity was measured using a hot-wire anemometer mounted on an automated traverse system. The paper presents experimental results obtained at various cross-sections of the rig — upstream, downstream, and between the rotor and the stator. Diverse data processing techniques were employed to derive average and instantaneous turbulence intensity values. These measured values were incorporated as inlet boundary conditions in Computational Fluid Dynamics (CFD) simulations. The CFD analysis complements the experimental findings, providing insights into the physics of how the distorted turbulence field evolves when passing through the single-stage fan. A comparison with experimental data also highlights limitations in the unsteady Reynolds-Averaged Navier-Stokes (RANS) model used. The results suggest that, in the presented test rig, changes in the loading of individual blades exert a more significant influence on turbulence field distortion downstream of the stage than the non-uniformity of inlet turbulent quantities. The average measured turbulence intensity between the rotor and the stator was 5.2%. Behind the stage, this value increased to 9.8% due to non-axisymmetric turbulence sources related to BLI in the stator row.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
386--400
Opis fizyczny
Bibliogr. 31 poz., fig., tab.
Twórcy
autor
- Department of Aerodynamics, Łukasiewicz Research Network, Institute of Aviation, Warsaw, Poland
autor
- Department of Aerodynamics, Łukasiewicz Research Network, Institute of Aviation, Warsaw, Poland
autor
- Department of Aerodynamics, Łukasiewicz Research Network, Institute of Aviation, Warsaw, Poland
autor
- Department of Aerodynamics, Łukasiewicz Research Network, Institute of Aviation, Warsaw, Poland
autor
- Department of Aircraft Propulsion, Łukasiewicz Research Network, Institute of Aviation, Warsaw, Poland
autor
- Department of Aerospace Engineering, University of Cincinnati, Cincinnati, Ohio, USA
Bibliografia
- 1. Bradshaw, P. An Introduction to Turbulence and Its Measurement: Thermodynamics and Fluid Mechanics Series; Pergamon, Oxford, 1971.
- 2. Camp, T.R.; Shin, H.-W. Turbulence intensity and length scale measurements in multistage compressors. J. Turbomachinery 1995, 117, 1, 38-46. https://doi.org/10.1115/1.2835642.
- 3. Wisler, D.C.; Bauer, R.C.; Okiishi, T.H. Secondary flow, turbulent diffusion, and mixing in axial-flow compressors. J. Turbomachinery 1987, 109, 4, 455–469. https://doi.org/10.1115/1.3262127.
- 4. Schlichting, H.; Das, A. On the Influence of Turbulence Level on the Aerodynamic Losses of Axial Turbomachines. In Proceedings of the Symposium on Flow Research on Blading, Baden, Brown Boveri and Co. Ltd., 1970; 243–274.
- 5. Van Sintern, W. Investigation of the Velocity Flow Field and Rotor Loss Coefficient in an Embedded and Non-Embedded Rotor in a Low Speed Research Compressor Using Two-Dimensional X-Probe Hot Film Anemometry. Ph.D. Dissertation, RWTH Aachen University, Aachen, 1998.
- 6. Sharma, O. Impact of Reynolds Number on LP Turbine Performance. In Proceedings of the 1997 Minnowbrook II Workshop on Boundary Layer Transition in Turbomachines, Cleveland, Lewis Research Center, 1998; 65–70.
- 7. Sieradzki, A.; Kwiatkowski, T.; Turner, M.G.; Łukasik, B. Numerical modeling and design challenges of boundary layer ingesting fans. J. Turbomachinery 2022, 144, 11, 091007. https://doi.org/10.1115/1.4055265.
- 8. Geiselhart, K.A.; Daggett, D.L.; Kawai, R.; Friedman, D. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control. NASA, December 2003; NASA/CR-2003-212670. https://ntrs.nasa.gov/citations/20040031343.
- 9. Felder, J.L.; Kim, H.D.; Brown, G.V. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft. In Proceedings of 47th AIAA Aerospace Sciences Meeting, Orlando, FL, January 2009; NASA. https://ntrs.nasa.gov/citations/20130010780.
- 10. Felder, J.L.; Brown, G.V.; DaeKim, H.; Chu, J. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft. In Proceedings of 20th International Society for Airbreathing Engines, Gothenburg, September 2011; NASA. https://ntrs.nasa.gov/citations/20120000856.
- 11. Felder, J.L.; Kim, H.D.; Brown, G.V.; Chu, J. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems. In Proceedings of 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January 2011; NASA. https://ntrs.nasa.gov/citations/20130010733.
- 12. Hardin, L.; Tillman, G.; Sharma, O.; Berton, J.; Arend, D. Aircraft System Study of Boundary Layer Ingesting Propulsion. In Proceedings of 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 2012. https://doi.org/10.2514/6.2012-3993.
- 13. Florea, R.V.; Voytovych, D.; Tillman, G.; Stucky, M.; Shabbir, A.; Sharma, O.; Arend, D.J. Aerodynamic Analysis of a Boundary-Layer-Ingesting Distortion-Tolerant Fan. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, June 2013. https://doi.org/10.1115/GT2013-94656.
- 14. Arend, D.J.; Wolter, J.D.; Hirt, S.M.; Provenza, A.; Gazzaniga, J.A.; Cousins, W.T.; Hardin, L.W.; Sharma, O. Experimental Evaluation of an Embedded Boundary Layer Ingesting Propulsor for Highly Efficient Subsonic Cruise Aircraft. In Proceedings of 53rd AIAA/SAE/ASEE Joint Propulsion Conference, July 2017; American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2017-5041.
- 15. Gunn, E.J.; Hall, C.A. Aerodynamics of Boundary Layer Ingesting Fans. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, September 2014. https://doi.org/10.1115/GT2014-26142.
- 16. Perovic, D.; Hall, C.A.; Gunn, E.J. Stall inception in a boundary layer ingesting fan. J. Turbomachinery 2019, 141, 091007. https://doi.org/10.1115/1.4043644.
- 17. Bakhle, M.A.; Reddy, T.S.; Coroneos, R.M. Forced Response Analysis of a Fan with Boundary Layer Inlet Distortion. In Proceedings of 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2014. https://doi.org/10.2514/6.2014-3734.
- 18. Kwiatkowski, T.; Sieradzki, A.; Łukasik, B. Method of designing a distortion gauze for testing a boundary layer ingesting fan. Trans. Aerosp. Res. 2022, 1, 1-17. https://doi.org/10.2478/tar-2022-0001.
- 19. Dowling, A.P.; Hynes, T. Towards a silent aircraft. Aeronaut. J. 2006, 110, 1110, 487–494. https://doi.org/10.1017/S000192400000138X.
- 20. Madani, V.; Hynes, T. Boundary Layer Ingesting Intakes: Design and Optimization. In Proceedings of XIX International Symposium on Air Breathing Engines, Montreal, Canada, 2009; ISABE 1346.
- 21. Sieradzki, A.; Łukasik, B. Influence of the Limited Room Space on Inlet Conditions and Fan Operation at the Rotating Test Rig. J. Phys.: Conf. Ser. 2021, 1736, 012051. https://doi.org/10.1088/1742-6596/1736/1/012051.
- 22. Jørgensen, F. How to Measure Turbulence with Hot-wire Anemometers (A Practical Guide); Dantec Dynamics, Skovlunde, Denmark, 2002.
- 23. Lomas, C.G. Fundamentals of Hot Wire Anemometry; Cambridge University Press, 1986.
- 24. Cherrett, M.A.; Bryce, J.D. Unsteady viscous flow in a high-speed core compressor. J. Turbomachinery 1992, 114, 2, 287-294. https://doi.org/10.1115/1.2929142.
- 25. Evans, R.L. Some Turbulence and Unsteadiness Effects in Turbomachinery. In Turbulence in Internal Flows; Hemisphere Publishing Corp., Warrenton, 1977; 485–516.
- 26. Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32(8), 1598–1605. https://doi.org/10.2514/3.12149.
- 27. Abu-Ghannam, B.J.; Shaw, R. Natural transition of boundary layers - The effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 1980, 22(5), 213–228. https://doi.org/10.1243/JMES_JOUR_1980_022_043_02.
- 28. Jameson, A. Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings. In Proceedings of Fluid Dynamics and Co-located Conferences, Honolulu, HI, June 1991; American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1991-1596.
- 29. El-Gabry, L.A.; Thurman, D.R.; Poinsatte, P.E. Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry. National Aeronautics and Space Administration, Glenn Research Center, Cleveland, 2014; NASA/TM-2014-218403.
- 30. Wilcox, D.C. Turbulence modeling for CFD, 3rd Edition; DCW Industries: La Cañada, Calif, 2006.
- 31. Menter, F.R. Stress-blended eddy simulation (SBES) – A new paradigm in hybrid RANS-LES modeling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2018; 137, 27–37. https://doi.org/10.1007/978-3-319-70031-1_3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d52d75d1-4d7a-4527-9a3c-36a3545b8db5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.