Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Every year, a large number of traffic accidents occur on Polish roads. However, the pandemic of recent years has reduced the number of these accidents, although the number is still very high. For this reason, all measures should be taken to reduce this number. This article aims to forecast the number of road accidents in Poland. Thus, using Statistica software, the annual data on the number of road accidents in Poland were analyzed. Based on actual past data, a forecast was made for the future, for the period 2022-2040. Forecasting the number of accidents in Poland was conducted using selected neural network models. The results show that a reduction in the number of traffic accidents is likely. The choice of the number of random samples (learning, testing and validation) affects the results obtained.
Rocznik
Tom
Strony
45--54
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Stanislaw Staszic University of Applied Sciences in Pila, Podchorazych 10 Street, 64-920 Pila, Poland
Bibliografia
- 1. WHO. “The Global status on road safety”. Available at: https://www.who.int/publications/i/item/9789241565684.
- 2. Helgason A. 2016. “Fractional integration methods and short Time series: evidence from asimulation study” Political Analysis 24(1): 59-68. Available at: http://www.jstor.org/stable/24573204.
- 3. Lavrenz S., E. Vlahogianni, K. Gkritza, Y. Ke. 2018. “Time series modeling in traffic safetyresearch” Accident Analysis & Prevention 117: 368-380.
- 4. “Forecasting based on time series”. Available at: http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf.
- 5. Prochazka J., M. Camaj. 2017. “Modelling the number of road accidents of uninsured drivers and their severity”. Proceedings of International Academic Conferences 5408040. International Institute of Social and Economic Sciences.
- 6. Procházka J., S. Flimmel, M. Čamaj, M. Bašta. 2017. Modelling the Number of Road Accidents. Wrocław: Publishing house of the University of Economics in Wrocław. DOI: doi:10.15611/amse.2017.20.29.
- 7. Sunny C.M., S. Nithya, K.S. Sinshi, V.M.D. Vinodini, A.K.G. Lakshmi, S. Anjana, T.K. Manojkumar. 2018. “Forecasting of Road Accident in Kerala: A Case Study”. International Conference on Data Science and Engineering (ICDSE). DOI: 10.1109/ICDSE.2018.8527825.
- 8. Sunny C.M., Nithya S., Sinshi K.S., Vinodini V.M.D. Lakshmi A.K.G., Anjana S., Manojkumar T.K. 2018 “Forecasting of Road Accident in Kerala: A Case Study” Environmental Science, Computer Science. International Conference on Data Science and Engineering (ICDSE). DOI:10.1109/ICDSE.2018.8527825
- 9. Dudek G. 2013 “Exponential smoothing models for short-term power system load forecasting”. Energy Market 3(106).
- 10. Dudek G. 2013. “Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks with Local Learning”. In: Rutkowski L., M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (eds). Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science 7894. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-38658-9_5.
- 11. Szmuksta-Zawadzka M., J. Zawadzki. 2009. “Forecasting on the basis of Holt-Winters models for complete and incomplete data”. Research papers of the Wrocław University of Economics 38.
- 12. Wójcik A. 2014. Autoregressive vector models as a response to the critique of multiequation structural econometric models. Katowice: Publishing house of the University of Economics in Katowice. Vol. 193.
- 13. Monederoa B.D., L.A. Gil-Alanaa, M.C.V. Martínezaa. 2021. “Road accidents in Spain: Are they persistent?”. IATSS Research 45(3): 317-325. DOI: https://doi.org/10.1016/j.iatssr.2021.01.002.
- 14. Al-Madani H. 2018. “Global road fatality trends’estimations based on country-wise microlevel data”. Accident Analysis & Prevention 111: 297-310. DOI: https://doi.org/10.1016/j.aap.2017.11.035.
- 15. Mamczur M. 2022. Machine learning How does linear regression work? And is it worth using? Available at: https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-wartoja-stosowac/
- 16. Piłatowska M. 2012. “The choice of the order of autoregression depending on the parameters of the generating model”. Econometrics 4(38).
- 17. Chudy-Laskowska K., T. Pisula. 2015. „Forecasting the number of road accidents in Podkarpacie”. Logistics 4.
- 18. Chudy-Laskowska K., T. Pisula. 2014. “Forecast of the number of road accidents in Poland”. Logistics 6.
- 19. “Road safety assessment handbook”. Available at: https://www.iung.pl/PJA/wydane/11/PJA11_3.pdf.
- 20. Wrobel M.S. 2017. Application of neural fuzzy systems in chemistry. PhD thesis. Katowice: University of Silesia.
- 21. “Data mining techniques StatSoft”. Available at: https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl %2Ftextbook%2Fstdatmin.html.
- 22. “Forecasting”. Available at: https://pracownik.kul.pl/files/140628/public/pze_lb_2.pdf.
- 23. “Statistic Road Accident”. Available at: https://statystyka.policja.pl/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d52bfe5e-3fde-43fa-b745-11ee7c0f932a