PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variable-speed drive with series - excited motors in dynamic braking mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Variable-speed DC drives with series-excited motors are widely used in the mining industry, transport and lifting equipment. The purpose of the study is to determine the dynamic characteristics of a variable direct current (DC) drive with a series-excited motor in the dynamic braking mode. In the article, there have been developed schematic diagrams of the power section that ensure stable braking of a variable-speed electric drive with a series-excited motor. The requirements for the braking mode have been developed. The studies have been carried out for a saturated and unsaturated magnetic circuit of an electric motor. The scientific novelty of the work consists in determining the zone of stable operation of the dynamic braking mode. As a result, there has been proposed technical implementation of the power section of a variable-speed electric drive with a series-excited motor that ensures stable braking. A special place in the study is the development of two models of an electric motor with subsequent excitation taking into account the saturation of the magnetic circuit - mathematical and simulation. Thus, the article has not only theoretical but also visual and practical significance in the context of already conducted studies on the subject. Options for the technical implementation of the braking regime were also considered in the course of the sequential implementation of the planned stages of the study.
Rocznik
Strony
art. no. 9
Opis fizyczny
Bibliogr. 54 poz., rys., wykr.
Twórcy
  • Department of Power Supply, Kazakh Agrotechnical University named after S. Seifullin, 010011, 62 Zhenis Ave., Astana, Republic of Kazakhstan
  • Faculty of Energy, Automation and Telecommunications, Karaganda Technical University, 100027, 56 Nazarbayev Ave., Karaganda, Republic of Kazakhstan
  • Department of Power Supply, Kazakh Agrotechnical University named after S. Seifullin, 010011, 62 Zhenis Ave., Astana, Republic of Kazakhstan
Bibliografia
  • 1. Abramov BI, Datskovski LKh, Kuz'min IK, Shevyrev YuV. Electric drives of mining installations. Russian Electrical Engineering 2017; 88: 159-165 [in Russian]. https://doi.org/10.3103/S1068371217030026
  • 2. Alekseyeva YuV. Crane-metallurgical and excavator DC motors. Moscow: Energoatomizdat 1985: 168 p [in Russian].
  • 3. Andrienko PD, Shilo SI, Kaplienko AO, Nemudry IYu. Studying transient modes in series connection of serial DC motors. Electrical Engineering and Power Industry 2009; 1: 10-16.
  • 4. Asok C, Deepa MU. IPMSM Drive with Interleaved Bidirectional Converter for Electric Vehicle Application. In: SPICES 2022 - IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (pp. 268-273). Institute of Electrical and Electronics Engineers Inc., 2022. https://doi.org/10.1109/SPICES52834.2022.9774142
  • 5. Barkas DA, Ioannidis GC, Psomopoulos CS, Kaminaris SD, Vokas GA. Brushed DC motor drives for Industrial and automobile applications with emphasis on control techniques: a comprehensive review. Electronics 2020; 9: 887. https://doi.org/10.3390/electronics9060887
  • 6. Byrka VF, Breido IV, Kaverin VV. Controlled emergency braking in a DC electric drive. In: Automatic control of technological processes in the mining industry 1993, pp. 64-70. Yekaterinburg: Science Process [in Russian].
  • 7. Camargos PH, Ribeiro PF, Belchior FN, Carvalho TCO. Time-varying harmonic distortions in AC drives. Electrical Engineering 2022; 104(5): 2967-2977. https://doi.org/10.1007/s00202-022-01525-4
  • 8. Chau KT, Ching TW, Chan CC, David TW. A novel two-quadrant zero-voltage transition converter for DC motor drives. International Journal of Electronics 2010; 86(2), 217-231. https://doi.org/10.1109/iecon.1997.671787.
  • 9. Ching TW. Four-quadrant zero-voltage-transition converter-fed dc motor drives for electric propulsion. Journal of Asian Electric Vehicles 2005; 3: 651-656. https://doi.org/10.4130/jaev.3.651.
  • 10. Elrefaey MS, Ibrahim ME, Eldin ET, Abdalfatah S, EL-Kholy EE. A Proposed Three-Phase Induction Motor Drive System Suitable for Golf Cars. Energies 2022; 15(17): 6469. https://doi.org/10.3390/en15176469
  • 11. Geller BL. Multi-motor thyristor electric drive of scraper conveyors. Coal 1984; 5: 33-35.
  • 12. GOST 12.2.003 SSBT. “Production equipment. General safety requirements”. 1991. https://www.russiangost.com/p-16887-gost-122003-91.aspx
  • 13. GOST 12.3.002 SSBT. “Production processes. General safety requirements”. 2014. https://docs.cntd.ru/document/1200124407v
  • 14. GOST 12.3.020 SSBT. “Processes of movement of goods in enterprises. General safety requirements”. 1980. https://docs.cntd.ru/document/1200000300
  • 15. Grepe FY. Patent US2605454 Dynamic braking of electric motors 1952. https://patents.google.com/patent/US2605454A/en?oq=Patent+US+2605454+Dynamic+braking+of+electric+motors
  • 16. Hassan W, Mahmood F, Andreotti A, Pagano M, Ahmad F. Influence of Voltage Harmonics on Partial Discharge Diagnostics in Electric Motors Fed by Variable-Frequency Drives. IEEE Transactions on Industrial Electronics 2022; 69(10): 10605-10614. https://doi.org/10.1109/TIE.2021.3134085
  • 17. Ioannidis GC, Kaminaris SD, Psomopoulos CS, Tsiolis S, Pachos P, Villiotis I, Malatestas P. DC motor drive applying conventional and fuzzy based PI control techniques. Journal of Agricultural and Rural Research 2015, 15, 1-10.
  • 18. Jenkins J. Regenerative braking: a closer look at the methods and limits of regen 2018. https://chargedevs.com/features/regenerative-braking-a-closer-look-at-the-methods-and-limits-of-regen/
  • 19. Kaverin VV. Controlled emergency braking in a regulated electric drive of mining machines. In: Abstracts of reports at the International Scientific and Practical Conference “Problems of Development of the Coal Industry of the Republic of Kazakhstan”, 1993; p. 117. Karaganda: KNIUI.
  • 20. Khandakji K. Analysis of hoisting electric drive systems in braking modes. Jordan Journal of Mechanical and Industrial Engineering 2012; 6(2): 141-145.
  • 21. Kopylov IP, Klokov BK. Reference book on electrical machines 1988. Energoatomizdat, 1, 456 p [in Russian].
  • 22. Korolev DA, Parfenov VV. Astakhov Feeders with an automated thyristor DC electric drive for shearers. Coal 1978; 2: 52-55.
  • 23. Kraus E.G. Adjustable thyristor electric drive – the basis for technical re-equipment of the coal industry. Moscow: Institute Forge: 1970: 48 p [in Russian].
  • 24. Kraus EG, Breido IV, Kaverin VV. Mathematical model of a direct current electric drive in dynamic braking mode. In: Energy, Telecommunications and Higher Education in Modern Conditions 2000; pp.142-143. Almaty: Science Process.
  • 25. Kraus EG, Breido IV, Leusenko AV. Experimental studies of a thyristor DC drive for mine scraper conveyors. Coal 1987; 2: 36-38.
  • 26. Krivovyaz V, Vasiliev P, Mayevsky V. DC traction electric drive of the modernized tram car “Tatra – 3”. Power Electronics 2007; 3: 36-38.
  • 27. Nevrl, J, Fichta M, Jurik M, Koutny D, Petrovic R. New systems of energy recovery and electric-hydraulic battery mobile drive. MM Science Journal 2022; 2022-October: 5795-5800. https://doi.org/10.17973/MMSJ.2022_10_2022073
  • 28. Panfilov MB, Baishemirov ZhD, Berdyshev AS. Macroscopic Model of Two-Phase Compressible Flow in Double Porosity Media. FLUID DYNAMICS 2020; 55(7): 936-951.
  • 29. Parfenov VV, Urusov VI, Musulmanbekov EZh. Automated thyristor DC electric drive for external feed parts of shearers. All-Union Scientific Research and Design Construct 1973; 47: 108-110.
  • 30. Patent 10213633 Motor Braking Patents. 2019. https://patents.justia.com/patents-by-us-classification/318/273
  • 31. Patent EP2332316B1 Methods and systems for providing location-based communication services. 2008. https://patents.google.com/patent/EP2332316B1/en?oq=Patent+2332316
  • 32. Patent RU2322751C1 Device for control of traction DC electric drive. 2008. https://patents.google.com/patent/RU2322751C1/en?oq=Patent+RU+2322751+C1
  • 33. Patent US20040066159A1 DC Motor having a braking circuit. 2004. https://patents.google.com/patent/US20040066159A1/en?oq=Patent+US+2004%2f0066159+A1+DC+Motor+having+a+braking+circuit
  • 34. Patent US2459655A Adjustable speed drive. 1945. https://patents.google.com/patent/US2459655A/en?oq=Patent+US+2459655
  • 35. Patent US4450388 Dynamic braking of direct current motors. 1984. https://patents.justia.com/patent/4450388
  • 36. Patent US4720666 Electric braking apparatus for brushless exctation system generator. 1988. https://patents.google.com/patent/US4720666
  • 37. Patent US5099184A Electrical series motor with dynamic braking circuit. 1992. https://patents.google.com/patent/US5099184A/en?oq=Patent+US+5099184+An+electrical+series+motor+with+dynamic+braking+circuit
  • 38. Patent US6856035B2 Electric generator and motor drive system. 2005. https://patents.google.com/patent/US6856035B2/en
  • 39. Patent US7075257B2 Method and device for braking a motor. 2006. https://patents.google.com/patent/US7075257B2/en
  • 40. Patent US8604728 Method and apparatus for controlling dynamic braking on locomotives. 2013. https://patents.google.com/patent/US8604728B2/en?oq=]+Patent+US+8604728+Method+and+apparatus+for+controlling+dynamic+braking+on+locomotives
  • 41. Patent US8981685 Controlling retarding torque in an electric drive system. 2015. https://patents.google.com/patent/US8981685B2/en?oq=Patent+US+8981685+Controlling+retarding+torque+in+an+electric+drive+system
  • 42. Qiu Ch, Wang G, Meng M, Shen YJ. A new strategy of controlling the regenerative braking system of electric vehicles in safety-critical road situations. Energy 2018, 149, 329-340. https://doi.org/10.1016/j.energy.2018.02.046
  • 43. Rules of designing and safe operation of cranes. 2012. (June 28, 2012, No. 37). https://energodoc.by/document/view?id=1777
  • 44. Rules of technical operation of rail vehicles (January 21, 2015, No. 35). https://adilet.zan.kz/rus/docs/V1500010329
  • 45. Safety of mining equipment, electrical installations and electrical equipment of coal mines and open-pit mines: Collection of documents. 2003. https://docplayer.com/74546956-Bezopasnost-gornotransportnogo-oborudovaniya-elektroustanovok-i-elektrooborudovaniya-ugolnyh-shaht-i-razrezov.html
  • 46. Saikumar TSS, Bhanumurthysoppari, Bandaru CR. Design and simulation of automated pad printing machine using automation studio. Materials Today: Proceedings 2021; 45: 2871-2877. https://doi.org/10.1016/j.matpr.2020.11.813
  • 47. Shavelkin AA, Kostenko IA, Gerasimenko VA, Movchan AN. 2016. Modeling a traction electric drive with DC series-excited motors. East-Earopean Journal of Advanced Technologies, 1(2(79)), 42-48. https://doi.org/10.15587/1729-4061.2016.60322
  • 48. Sipailov GA, Loos AV. Mathematical modelling of electrical machines. Moscow: Higher School 1980, 176 p [in Russian].
  • 49. Smith, D.M. 1980. Mathematical and digital modelling for research engineers. Moscow: Mechanical Engineering, 83 p [in Russian].
  • 50. Stashinov Yu.P. Investigation of transient processes in a traction electric drive of a mine accumulator electric locomotive with recuperative braking. Mining Information and Analytical Bulletin (Scientific and Technical Journal) 2005, 354-355.
  • 51. Stashinov YuP, Semenchuk AS, Volkov DV. On the optimal traction characteristic of a mine electric locomotive drive and ways of its implementation. Mining Information and Analytical Bulletin (Scientific and Technical Journal) 2008: 354-358.
  • 52. Sultanov KS, Khusanov BE, Rikhsieva BB. Longitudinal waves in a cylinder with active external friction in a limited area. IV International Scientific and Technical Conference Mechanical Science and Technology Update (mstu-2020) 2020; 1546: 012140.
  • 53. Veshenevsky, S.N. 1977. Characteristics of motors in an electric drive. Moscow: Energiya, 432 p [in Russian].
  • 54. Youssef OEM, Hussien MG, Hassan AE-W. A new simplified sensorless direct stator field-oriented control of induction motor drives. Frontiers in Energy Research 2022; 10: 961529. https://doi.org/10.3389/fenrg.2022.961529
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d52a86eb-c79d-4ea4-8cae-45fb107c95ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.