PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Możliwości wykorzystania nanotechnologii i nanomateriałów w procesach uzdatniania wody i oczyszczania ścieków, Cz. 3, Fotokataliza

Identyfikatory
Warianty tytułu
EN
Possibility of nanotechnology and nanomaterials application in water and wastewater treatment processes, Part. 3, Photocatalysis
Języki publikacji
PL
Abstrakty
PL
Fotokataliza jest skuteczną metodą oczyszczania wody i ścieków, umożliwiającą degradację całego spektrum zanieczyszczeń organicznych i nieorganicznych oraz mikroorganizmów. Pomimo intensywnych badań nad innymi fotokatalizatorami (np. ZnO, ZnS, kompozyty półprzewodnikowo-grafenowe, MoS2, WO3 i Fe2O3), tlenek tytanu(IV) (TiO2) pozostaje najpopularniejszym fotokatalizatorem ze względu na swój niski koszt, nietoksyczność i wysoką zdolność utleniania. Co więcej, fotokatalizatory TiO2 można łatwo unieruchomić na różnych powierzchniach i zastosować do oczyszczanie wody i ścieków na dużą skalę. Obecny przegląd ma na celu zwrócenie uwagi na najnowsze osiągnięcia w zakresie fotokatalizy z głównym naciskiem na wykorzystanie nanokatalizatorów. Omówiono wykorzystanie nanofotokatalizy do degradacji takich substancji niebezpiecznych, jak związki endokrynnie czynne (pestycydy, farmaceutyki fenole i inne), barwniki, mikroorganizmy oraz metale ciężkie.
EN
Photocatalysis is an effective method for water and wastewater treatment allowing degradation of a wide spectrum of organic and inorganic pollutants and microorganisms. Despite recent research into other photo-catalysts (e.g. ZnO, ZnS, semiconductor-graphene composites, MoS2, WO3 and Fe2O3), titanium dioxide (TiO2) remains the most popular photo-catalyst due to its low cost, non-toxicity and high oxidation capacity. Moreover, TiO2 photo-catalysts can be easily immobilised on various surfaces and used for large-scale in water and wastewater treatment. The present review aims to highlight the latest developments in photo-catalysis with the main focus on application of nano-catalysts. The use of photocatalysis for the degradation of hazardous substances such as endocrine active compounds (pesticides, phenols, pharmaceuticals and others), dyes, microorganisms and heavy metals is discussed.
Czasopismo
Rocznik
Tom
Strony
4--18
Opis fizyczny
Bibliogr. 91 poz., rys., tab.
Twórcy
  • Polska Akademia Nauk, Instytut Podstaw Inżynierii Środowiska
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki
Bibliografia
  • [1] Molinari R., Argurio P., Bellardita M., Palmisano L., Photocatalytic Processes in Membrane Reactors, in: Comprehensive Membrane Science and Engineering, second edition, 3(2017)101–138. Oxford: Elsevier.
  • [2] Reddy P.A.K., Reddy P.V.L., Kwon E., Kim K.H., Akter T., Kalagara S., Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  • [3] Friehs E., AlSalka Y., Jonczyk R., Lavrentieva A., Jochums A., Walter J.-G., Stahl F., Scheper T., Bahnemann D., Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 29 (2016) 1–28.
  • [4] Qu X., Alvarez P.J., Li Q., Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  • [5] Turki, A., Guillard, C., Dappozze, F., Ksibi, Z., Berhault, G., Kochkar, H., Phenol photo-catalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms, Appl. Catal. B Environ., 163 (2015) 404–414.
  • [6] Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M.L., Agostiano, A., Comparelli, R., Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281 (2016) 85-100.
  • [7] Bodzek M., R ajca M., Fotokataliza w oczyszczaniu i dezynfekcji wody, cz.I. Podstawy teoretyczne, Technologia Wody, 4(12) (2011) 18-33.
  • [8] Chong M.N., Jin B., Chow C.W.K., Saint C., Recent developments in photocatalytic water treatment technology: A review, Water Research, 44 (2010) 2997 – 3027.
  • [9] Dalrymplea O. K., Stefanakos E., Trotz M.A., Goswami D.Y., A review of the mechanisms and modeling of photocatalytic disinfection, Applied Catalysis B: Environmental, 98 (2010) 27–38.
  • [10] Bora T. and Dutta J., Applications of Nanotechnology in Wastewater Treatment - A Review, Journal of Nanoscience and Nanotechnology, 14 (2014) 613–626.
  • [11] Kasza T., Badanie właściwości fotokatalitycznych i charakterystyka fizykochemiczna nanokrystalicznych filmów TiO2 na podłożu ceramicznym, Praca doktorska, Politechnika Krakowska, Kraków 2007.
  • [12] Pelaez M., Nolan N.T., Pillai S.C.,. Seery M.K,. Falaras P, Kontos A.G, Dunlop P.S., Hamilton J.W., Byrne J.A., O’shea K., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125 (2012) 331–349.
  • [13] Byrne C., Subramanianc G., Pillai Suresh C., Recent advances in photocatalysis for environmental applications, Journal of Environmental Chemical Engineering, 6 (3) (2018) 3531-3555.
  • [14] Ganguly P., Byrnea C., Subramanianc G., Pillai Suresh C., Recent advances in photocatalysis for environmental, Applied Catalysis B: Environmental, 225 (5) (2018) 51-75.
  • [15] Kim J., Lee C.W., Choi W., Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environmental Science and Technology, 44 (2010) 6849-6854.
  • [16] Bai X., L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir, 29 (2013) 3097–3105.
  • [17] Tian C., Zhang Q., Wu A., Jiang M., Liang Z., Jiang B., Fu H., Cost-effective largescale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation, Chem. Commun., 48 (2012) 2858–2860.
  • [18] Wang Y., Shi R., Lin J., Zhu Y., Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C 3 N 4, Energy Environ. Sci., 4 (2011) 2922–2929.
  • [19] Zyoud, A., Dwikat, M., Al-Shakhshir, S., Ateeq, S., Shteiwi, J., Zu’bi, A., Helal,M.H.S., Campet, G., Park, D., Kwon, H., Kim, T.W., Kharoof, M., Shawahna, R., Hilal, H.S., Natural dye-sensitized ZnO nano-particles as photo-catalysts in complete degradation of E. coli bacteria and their organic content, J. Photochem. Photobiol. A Chem., 328 (2016) 207–216.
  • [20] Anjum M., Miandad R., Waqas M., Gehany F., Barakat M.A., Remediation of wastewater using various nanomaterials, Arabian Journal of Chemistry, 12 (2019) 4897-4919.
  • [21] Pradeep T., Anshup, Noble metal nanoparticles for water purification: a critical review, Thin Solid Films, 517 (2009) 6441–6478.
  • [22] Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B., Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3–4 (2016) 22–39.
  • [23] Ni M., Leung M.K.H., Leung D.Y.C., Sumathy K., A review and recent developments in photocatalytic water–splitting using TiO2 for hydrogen production, Renewable & Sustainable Energy Reviews, 11 (2007) 401-425.
  • [24] Ibhadon O.A., Fitzpatrick P., Heterogeneous photocatalysis: recent advancesand applications, Catalysts, 3 (2013) 189–218.
  • [25] Linic S., Christopher P., Ingram D.B., Plasmonic-metal nanostructures forefficient conversion of solar to chemical energy, Nat. Mater., 10 (2011) 911–921.
  • [26] Etacheri V., Di Valentin C., Schneider J., Bahnemann D., Pillai S.C., Visible-light activation of TiO2 photocatalysts: advances in theory andexperiments, J. Photochem. Photobiol. C: Photochem. Rev., 25 (2015) 1–29.
  • [27] Sathishkumar P., Sweena R., Wu J.J., Anandan S., Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chem. Eng. J., 171 (2011) 136–140.
  • [28] Kawahara T., Konishi Y., Tada H., Tohge N., Nishi J., Ito S., A patterned TiO-2(Anatase)/ TiO2(Rutile) bilayer-type photocatalystic: Effect of the Anatase/ Rutile junction on the photocatalytic activity, Angew.Chem.Int.Edit, 41 (2002) 2811-2813.
  • [29] Etacheri V., Seery M.K., Hinder S.J., Pillai S.C., Highly visible light active TiO2-x N x heterojunction photocatalysts, Chem. Mater., 22 (2010) 3843–3853.
  • [30] Li G.-S., Zhang D.-Q., Yu J.C., A New Visible-Light Photocatalyst: CdS Quantum Dots Embedded Mesoporous TiO2, Environ. Sci. Technol., 43 (2009 ) 7079-7085.
  • [31] Zhu H., Jiang R., Xiao L., Chang Y., Guan Y., Li X., Zeng G.,Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation, J. Hazard. Mater., 169 (2009) 933–940.
  • [32] Eskizeybek V., Sari F., Gulce H., Gulce A., Avci A., Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations, Appl. Catal. B: Environ., 119 (2012) 197–206.
  • [33] Sun L., Zhao Z., Zhou Y., Liu L., Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity, Nanoscale, 4 (2012) 613–620.
  • [34] Huang Q., Tian S., Zeng D., Wang X, Song W., Li Y., Xiao W., Xie C., Enhanced pho-tocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond, ACS Catal., 3 (2013) 1477–1485.
  • [35] Pastrana-Martínez L.M., Morales-Torres S., Figueiredo J.L., Faria J.L., Silva A.M.T., Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water, Water Res., 77 (2015) 179–190.
  • [36] Li W., Zhang Y., Tian G., Xie S., Xu Q., Wang L., Tian J., Bu Y., Fabrication of graphene-modified nano-sized red phosphorus for enhanced photocatalytic performance, J. Mol. Catal. A: Chem., 423 (2016) 356–364.
  • [37] Lim T.-T., Yap P.-S., Srinivasan M., Fane A.G., TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation, Crit. Rev.Environ. Sci. Technol., 41 (2011) 1173–1230.
  • [38] Gao B.,. Yap P.S, Lim T.M., Lim T.-T., Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: effect of activated carbon support and aqueous anions, Chem. Eng. J., 171 (2011) 1098–1107.
  • [39] Adeleye A.S., Conway J.R., Garner K., Huang Y., Su Y., Keller A.A., Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability, Chem. Eng. J., 286 (2016) 640–662.
  • [40] Bodzek M., Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45 (4) (2019) 4–19.
  • [41] Gmurek M., Olak-Kucharczyk M., Ledakowicz S., Photochemical decomposition of endocrine disrupting compounds–a review, Chem. Eng. J., 310 (2017) 437–456.
  • [42] Sornalingam K., McDonagh A., Zhou J.L., Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: progress and future challenges, Sci. Total Environ., 550 (2016) 209–224.
  • [43] Muneer M., Qamar M., Saquib M., Bahnemann D.W., Heterogeneous photocatalysed reaction of three selected pesticide derivatives propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide, Chemosphere, 61 (2005) 457–468.
  • [44] Rahman M.A., Mohd M., Photocatalysed degradation of two selected pesticide de-rivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide, Desalination, 181(2005) 161–172.
  • [45] Bandala E.R., Gelover S., Leal T., Arancibia C., Jiménez A., Estrada C., Solar photocatalytic degradation of Aldrin, Catal Today, 76 (2002) 189–199.
  • [46] Gomez S., Marchena C.L., Renzini M.S., Pizzio L., Pierella L., In situ generated TiO2 over zeolitic supports as r eusable photocatalysts for the degradation of dichlorvos, Appl. Catal. B: Environ., 162 (2015) 167–173.
  • [47] Oller I., Gernjak W., Maldonado M.I.,. Pérez-Estrada L.A, Malato S., Solar pho-tocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale, J Hazard Mater., 138 (2006) 507–517.
  • [48] Jafari S.J., Moussavi G., Hossaini H., Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO 2 process, Desalin. Water Treat., 57 (2016) 3782–3790.
  • [49] Sacco O., Vaiano V., Han, D. Sannino C., Dionysiou D.D., Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors, Appl. Catal. B: Environ.,164 (2015) 462–474.
  • [50] Zheng L., Pi F., Wang Y., Xu H., Zhang Y., Sun X., Photocatalytic degradation of acephate, omethoate, and methyl parathion by Fe3O4@SiO2@ mTiO2 nanomicrospheres, J. Hazard. Mater., 315 (2016) 11–22.
  • [51] Hung C.-H., Yuan C., Li H.-W., Photodegradation of diethyl phthalate with PANi/ CNT/TiO2 immobilized on glass plate irradiated with visible light and simulated sunlight - effect of synthesized method and pH, J. Hazard. Mater., 322 (2017) 243–253.
  • [52] Pino, E. Encinas M.V., Photocatalytic degradation of chlorophenols on TiO2325 mesh and TiO2-P25. An extended kinetic study of photodegradation under competitive conditions, J. Photochem. Photobiol. A: Chem., 242 (2012) 20–27.
  • [53] Doong R.-A., Liao C.-Y., Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations, Sep. Purif. Technol., 179 (2017) 403–411.
  • [54] Davididou K., Hale E., Lane N., Chatzisymeon E., Pichavant A., Hochepied J.- F., Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn (IV), Catal. Today, 287 (2017) 3–9.
  • [55] Hernández-Gordillo A., Obregón S., Paraguay-Delgado F., Rodríguez-González V., Effective photoreduction of a nitroaromatic environmental endocrine disruptor by AgNPs functionalized on nanocrystalline TiO2, RSC Adv., 5 (2015) 15194–15197.
  • [56] Kalarivalappil V., Divya C., Wunderlich W., Pillai S.C., Hinder S.J., Nageri M., Kumar V., Vijayan B.K., Pd loaded TiO2 nanotubes for the effective catalytic reduction of p nitrophenol, Catal. Lett., 146 (2016) 474–482.
  • [57] Chan S. H. S., Yeong T. Wu, Juan J. C., Teh C. Y., Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol., 86 (2011) 1130-1158.
  • [58] Baruah S., Mahmood M.A., MMyint.T.Z., Bora T., Dutta J., Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods, Beilstein J. Nanotechnol., 1, (2010) 14-20.
  • [59] Danwittayakul S., Jaisai M., Koottatep T., Dutta J., Enhancement of Photocatalytic Degradation of Methyl Orange by Supported Zinc Oxide Nanorods/Zinc Stannate (ZnO/ZTO) on Porous Substrates, Ind. Eng.Chem. Res., 52 (2013) 13629-13636.
  • [60] Han F., Kambala V.S.R., Srinivasan M., Rajarathnam D., Naidu R., Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal. A: Gen., 359 (2009) 25–40.
  • [61] Baruah S., Jaisai M., Imani R.; Nazhad M. M., Dutta J., Photocatalytic paper using zinc oxide nanorods, Sci. Technol. Adv. Mater., 11(5) (2010) 055002.
  • [62] Di Mauro A., Cantarella M., Nicotra G., Pellegrino G., Gulino A., Brundo M.V., Privitera V., Impellizzeri G., Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications, Sci. Rep., 7 (2017) 40895.
  • [63] Dutta A.K., Maji S.K., Adhikar y B., C-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater. Res. Bull. 49 (2014) 28–34.
  • [64] Arlos M.J., Hatat-Fraile M.M., Liang R., Bragg L.M., Zhou N.Y., Andrews S.A., Servos M.R., Photocatalytic decomposition of organic micropollutants using immobilized TiO2 h aving d ifferent isoelectric points, Water Res., 101 (2016) 351–361.
  • [65] Liang R., Hu A., Li W., Zhou Y.N., En¬anced degradation of persistent pharmaceuticals found in wastewater treatment eff luents using TiO2 nanobelt photocatalysts, J. Nanopart. Res., 15 (2013) Article number: 1990 .
  • [66] Alvarez-Corena J.R., Bergendahl J.A., Hart F.L., Advanced oxidation of five con-taminants in water by UV/TiO2: reaction kinetics and byproducts identification, J. Environ. Manage., 181 (2016) 544–551.
  • [67] Mboula V.M., Héquet, V., Andrès Y., Gru Y., Colin, R., Doña-Rodríguez J., Pastrana-Martínez L., Silva A., Leleu M., Tindall A., Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity, Appl. Catal. B: Environ., 162 (2015) 437–444.
  • [68] Doná G., Dagostin J.L.A., Takashina T.A., Castilhos F.d., Igarashi-Mafra, L., A comparative approach of methylpara¬ben photocatalytic degradation assisted by UV-C UV-A and vis radiations, Environ. Technol., (2017) 1–43.
  • [69] Yu, J.C., Ho, W., Lin, J., Yip, H., Wong, P.K., Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate, Environ. Sci. Technol., 37 (2003) 2296–2301.
  • [70] Lonnen J., et al, Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Res., 39(5) (2005) 877–883.
  • [71] Liu Y., Wang X., Yang F., Yang X., Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mater., 114 (2008) 431–439.
  • [72] Akhavan O., Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Colloid Interface Sci., 336 (2009) 117–124.
  • [73] Bhadra P., Mitra M.K.,; Das G.C., Dey R., Mukherjee S., Interaction of chitosan capped ZnO nanorods with Escherichia coli, Mater. Sci. Engineer., C 31(5) (2011) 929-937.
  • [74] Eskandari M., Haghighi N., Ahmadi V., Haghighi F., Mohammadi S.R., Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass, Physica B, 406(1) (2011) 112-114.
  • [75] Hao R., Wang G., Tang H., Sun L., Xu C., Han D., Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal. B: Environ., 187 (2016) 47–58.
  • [76] Pandey N., Shukla, S. K., Singh N.B., Water purification by polymer nanocomposites: an overview, Nanocomposites, 3(2) (2017) 47-66.
  • [77] Zeng X., Wang Z., Meng N., McCarthy D.T., Deletic A., Pan J.-h., Zhang X., Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection, Appl. Catal. B Environ., 202 (2017) 33–41.
  • [78] Anis S.F., Hashaikeh R., N. Hilal, Functional materials in desalination: A review, Desalination, 468 (2019) 114077.
  • [79] Pablos C ., Marugán J., v an G rieken R ., Serrano E.: Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Res., 47 (2013) 1237-1245.
  • [80] Bogdan J., Szczawiński J., Zarzyńska J., Pławińska-Czarnak J., Mechanizmy inaktywacji bakterii na powierzchniach fotokatalitycznych, Med. Weter., 70 (11) (2014) 657-662.
  • [81] Chaturvedi S., Dave P.N., Shah N.K., Applications of nanocatalyst in new era, J. Saudi Chem. Soc., 16 (2012) 307–325.
  • [82] Lee J., Park H. , Choi W. , Selective photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water, Environ. Sci. Technol., 36 (2002) 5462-5468.
  • [83] Ruvarac-Bugarčić I.A., Šaponjić Z.V., Zeca S., Rajh T. Nedeljkovića J.M., Photocatalytic reduction of cadmium on TiO2 nanoparticles modified with amino acids, Chemical Physics Letters, 407 (2005) 110-113.
  • [84] Byrne H.E., Mazyck D .W., R emoval o f trace level aqueous mercury by adsorption and photocatalysis on silica–titania composites, Journal of Hazardous Materials, 170 (2009) 915-919.
  • [85] Recillas, S., García, A., González, E., Casals, E., Puntes, V., Sánchez, A., & Font, X., Use of CeO2, TiO2 a nd Fe3O4 nanoparticles for the removal of lead from water: Toxicity of nanoparticles and derived compounds, Desalination, 277(1–3) (2011)213–220.
  • [86] Pena, M. E., Korfiatis, G. P., Patel, M., Lippincott, L., & Meng, X., Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide, Water Research, 39(11) (2005) 2327–2337.
  • [87] Zhang F.-S., Nriagu J. O., Itoh H., J., Photocatalytic removal and recovery of mercury from water using TiO2-modified sewage sludge carbon, Photochem. Photobiol. A, 167 (2004) 223-228.
  • [88] Liu X., Lv T., Liu Y., Pan L., Sun Z., TiO2– Au composite for efficient UV photocatalytic reduction of Cr(VI), Desalin. Water Treat., 51 (2013) 3889-3895.
  • [89] Ahmad R., K han A.U., Mastoi N.R., Aslam M., Kim J., Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications, Journal of Environmental Chemical Engineering, 4 (2016) 4143–4164.
  • [90] Benotti M.J., Stanford B.D., Wert E.C., Snyder, S.A., Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water, Water Research, 43 (2009) 1513-1522.
  • [91] Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V., Li DAlvarez., P.J.J., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42 (2008) 4591–4602.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5297c5d-0f69-4db8-b0f9-656e9529877b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.