Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, a series of unconfined compression tests at different water contents were performed to investigate the mechanical behaviour of clay–sand mixtures compacted in standard Proctor conditions. For studying the effect of water content and suction on unconfined compressive strength (UCS) and on strain secant modulus (E50 modulus) of these mixtures, drying–wetting paths were defined by measuring the soil–water characteristic curves (SWCCs) using osmotic and salt solution techniques and filter paper method. The results highlighted that an increase in sand content of the mixture leads to an increase in the maximum dry densities and a decrease in the optimum water content of the materials. However, at the given state, when clay is mixed with 25% of sand, the UCS and E50 modulus increase to 37% and 70%, respectively, compared to those of clayey samples. But when clay is mixed with 50% of sand, the UCS and E50 modulus decrease to 38% and 46%, respectively, compared to those of clayey samples. The results also indicate that the UCS and E50 increase with a decrease in the water content and an increase in suction, irrespective of the sand content.
Wydawca
Czasopismo
Rocznik
Tom
Strony
175--189
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- INFRARES Laboratory, Department of Civil Engineering, University of Souk Ahras
autor
- LOMC, UMR CNRS 6394, Department of Civil Engineering, University of Le Havre Normandy
Bibliografia
- [1] Komine, H. and Ogata, N. (1999). Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal, Soils and found. 39(2), pp. 83–97. DOI:10.3208/sandf.39.2_83
- [2] Novais-Ferreira, H. (1971). The clay content and the shear strength in sand-clay mixtures. Proceeding of 5th African Regional Conference of Soil Mechanic. Found. Eng. Luanda, August.
- [3] Skempton, A.W. (1985). Residual strength of clays in landslides, folded strata and the laboratory, Géotechnique, 35(1), pp. 3–18; DOI: 10.1680/geot.1985.35.1.3
- [4] Muir Wood, D. and Kumar, G. V. (2000). Experimental observations of behaviour of heterogeneous soils, Mec. Cohesive-Frictional Mater., 5(5), pp.373–398. DOI:10.1002/1099-1484(200007)5:5
- [5] Vallejo, L. E. and Mawby, R. (2000). Porosity influence on the shear strength of granular material-clay mixtures, Eng. Geol., 58(2), pp. 125–136. DOI:10.1016/S0013-7952(00)00051-X.
- [6] Prakasha, K. S. and Chandrasekaran, V. S. (2005). Behaviour of marine sand-clay mixtures under static and cyclic triaxial shear, J. Geotech. Geoenviron. 131(2), pp. 213–222. DOI:10.1061/(ASCE)1090-0241(2005)131:2(213)
- [7] Monkul, M.M. and Ozden, G. (2007). Compressional behavior of clayey sand and transition 20 fines content, Eng. Geol., 89(3–4), pp. 195–205, https://doi.org/10.1016/j.enggeo2006.10.001.
- [8] Shafiee, J., Tavakoli, H.R. and Jafari, M.K. (2008). Undrained behaviour of compacted sand-clay mixtures under monotonic loading paths, J. Appl. Sci., 8(18), pp. 3108–3118.
- [9] Pakbaz, M. S. and Moqaddam A.S. (2012). Effect of sand gradation on the behaviour of sand-slay mixtures, Int. J. GEOMATE. 3(1) (Sl. No. 5), pp. 325–331. DOI: 10.21660/2012.5.3d.
- [10] Cabalar, A.F., Hasan, R.A. (2013). Compressional behaviour of various size/shape sand–clay mixtures with different pore fluids, Eng. Geol., 164, pp. 36–49, https://doi.org/10.1016/j.enggeo.2013.06.011.
- [11] Cabalar, A.F., Mustafa, W.S. (2015). Fall cone tests on clay–sand mixtures, Eng. Geol., 192, pp.154–165, https://doi.org/10.1016/j.enggeo.2015.04.009.
- [12] Elkady, T.Y., Shaker, A.A. and Dhowain, A.W., (2015). Shear strengths and volume changes of sand–attapulgite clay mixtures, Bull. Eng. Geol. Environ. 74, pp. 595–609.
- [13] Mun, W., Balci, M.C., Valente, F. and McCartney, JS. (2018). Shearing and compression behavior of compacted sand-clay mixtures. Proceeding of the 7th International Conference on Unsaturated Soils UNSAT 2018, Hong Kong university.
- [14] Sun, D., Sun, W., Yan, W. and Li, J. (2010). Hydro-mechanical behaviours of highly compacted sand-bentonite mixture, J. Rock Mech. Geotech. Eng., 2(1), pp. 79–85. DOI:10.3724/SP.J.1235.2010.00079.
- [15] Anuchit, U. (2014). Effect of suction on unconfined compressive strength of clayey soils with different sand contents, ARPN, J. Eng. Appl. Sc., 9(6), pp. 881–884. http://www.arpnjournals.com/jeas/volume_06_2014.htm.
- [16] Khan, F. S., Azam, S., Raghunandan, M.E. and Clark, R. (2014). Compressive Strength of Compacted Clay-Sand Mixes, Adv. Mater. Sci. Eng., Volume 2014, Article ID 921815, 6 pages. DOI:10.1155/2014/921815.
- [17] Serbah, B., Abou-Bekr, N., Bouchemella, S., Eid, J. and Taibi, S. (2018). Dredged sediments valorisation in CEBs: Suction and water content effect on their 1 mechanical properties, Constr. Build. Mater., 158, pp. 503–515. DOI:10.1016/j.conbuildmat.2017.10.043.
- [18] Cabalar A.F., Khalaf, M.M. and Karabash, Z. (2018). Shear modulus of clay-sand mixtures using bender element test, Acta Geotech. Slov., (1), pp. 3–15. DOI:10.18690/actageotechslov.15.1.3-15.2018.
- [19] Kenney, T.C., Van Veen, W.A., Swallow, M.A., and Sungaila, M.A. (1992). Hydraulic conductivity of compacted bentonite sand mixtures, Can. Geotech. J. 29(3), 364–374. DOI:10.1139/t92-042.
- [20] Howell, J.L., Shackeford, C.D., Amer, N.H. and Stern, R.T. (1997). Compaction of sand-10 processed clay soil mixtures, Geotech. Test. J., 20(4), pp. 443–458. DOI: 10.1520/GTJ10411J.
- [21] Colmenares Montanes, J.E. (2002). suction and volume changes of compacted sand-bentonite mixtures, PH.D Thesis., university of London, U.K
- [22] Cabalar, A.F., Mustafa, W.S. (2017). Behaviour of sand–clay mixtures for road pavement subgrade, Int. J. Pavement Eng., 18(8), 714–726. DOI: 10.1080/10298436.2015.1121782
- [23] Sivapullaiah P., Sridharan, A. and Stalin, V.k. (2000). Hydraulic Conductivity of Bentonite Sand Mixtures, Can. Geotech. J., 37(2), pp. 406–413, DOI:10.1139/T99-120.
- [24] Fuentes, W.M., Hurtado, C. and Lascarro, C. (2018). On the influence of the spatial distribution of fine content in the hydraulic conductivity of sand-clay mixtures, Earth Sci. Res. J., 22(4), pp. 239–249, DOI:10.15446/esrj.v22n4.69332.
- [25] Taibi, S. (1994). Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative – Etude expérimentale et modélisation, Ph.D. Thesis, Ecole centrale, Paris, France.
- [26] Fleureau, J.-M., Verbrugge, J.-C., Huergo, P.J, Correia, A.-G. and Kheirbek-Saoud, S. (2002). Aspects of the behaviour of compacted clayey soils on drying and wetting paths, Can. Geotech. J. 39(6), pp. 1341–1357. DOI:10.1139/t02-100.
- [27] Hattab, M. and Fleureau, J.M. (2010). Experimental study of kaolin particle orientation mechanism, Géotechnique 60(5), pp. 323–331. DOI:10.1680/geot.2010.60.5.323.
- [28] Wei X., Hattab M., Fleureau, J.M. and Ruilin, H. (2013). Micro–macro experimental study of two clayey materials on drying paths, Bull. Eng. Geol. Environ. 72(3–4), pp. 495–508. DOI:10.1007/s10064-013-0513-4.
- [29] Ighil Ameur, L., Robin, R. and Hattab, M. (2016). Elastic properties in a clayey material under mechanical loading - an estimation through ultrasonic propagations, Eur. J. Environ. Civ. Eng., 20 (9), pp. 1127–1146. DOI:10.1080/19648189.2015.1090926.
- [30] NF EN ISO 17892-4 (2018), Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of particle size distribution. French standard, AFNOR Editions. France.
- [31] NF EN ISO 17892-12 (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 12: determination of liquid and plastic limits. French standard, AFNOR Editions. France.
- [32] Tan, T.S., Goh, T.C., Karunaratne, G.P., Lee, S.L., (1994). Shear strength of very soft clay–sand mixtures. Geotech. Test. J., 17(1), pp.27–34.
- [33] Kheirbek-Saoud, S. (1994). Comportement mécanique de la couche de fondation d’une voie ferrée. Ph.D. Thesis, Ecole centrale de Paris, Paris, France.
- [34] NF P94-093 (2014). Soils: investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified Proctor test, French standard, AFNOR Editions. France.
- [35] Azam, S. and Chowdhury, R. H. (2013). Swell-shrink-consolidation behaviour of compacted expansive clays, Int. J. Geot. Eng., 7(4), pp. 424–430.
- [36] Marinho, F. A. M. and Oliveira, O. M. (2012). Unconfined shear strength of compacted unsaturated plastic soils, Proceedings of the Institution of Civil Engineers: Geot. Eng., 165(2), pp. 97–106.
- [37] NF EN ISO 17892-7 (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 7: unconfined compression test, French standard, AFNOR Editions. France.
- [38] NF EN ISO 17892-9 (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 9: consolidated triaxial compression tests on water saturated soils, French standard, AFNOR Editions. France.
- [39] Taibi, S., Duperret, A. and Fleureau, J.-M. (2009). The effect of suction on the hydro mechanical behaviour of chalk rocks, Eng. Geol., 106, pp.40–50.
- [40] Biarez, J., Fleureau, J.M., Zerhouni, M.I and Soepandji, B.S. (1988). Variations de volume des sols argileux lors de cycles de drainage-humidification. Revue Française de Géotechnique, 41, pp. 63–71.
- [41] Fleureau, J.M., Kheirbek-Saoud, S., Soemitro, R. and Taibi, S. (1993). Behavior of clayey soil on drying-wetting paths. Can. Geotech. J., 3(2), 287–296. https://doi.org/10.1139/t93-024.
- [42] Zur, B. (1966). Osmotic control the matrix soil water potential, Soil Sci., pp. 394–398.
- [43] Williams, J. and Shaykewich, C.F. (1969). An evaluation of polyethylene glycol (P.E.G.) 6000 and P.E.G. 20000 in the osmotic control of soil water matrix potential, Can. J. Soil Science, 102, pp. 394–398.
- [44] Indarto (1991). Comportement mécanique et compactage des matériaux de barrages. Ph.D. Thesis, Ecole centrale de Paris, Paris, France.
- [45] Delage, P. and Suraj, D. (1992). Suction controlled testing of non-saturated soils with osmotic consolidometer. 7th international conference expansive soils, Dallas, pp. 206–211.
- [46] Delage, P., Howat, M.D. and Cui, Y.J. (1998). The relationship between suction and swelling properties in a heavily compacted unsaturated clay, Eng. Geol., 1(1), pp. 31–48. DOI: 10.1016/S0013-7952(97)00083-5
- [47] Bouchemella, S. and Alimi-Ichola, I. (2016). Détermination de la variation spatio-temporelle de la teneur en eau lors d’une infiltration verticale en utilisant la méthode TDR, Annales du Bâtiment et des Travaux Publics. 68 (5–6). Numéro spécial : 34es Rencontres universitaires de Génie Civil, Liège, 24–27 mai 2016. ISBN 978-2-7472-2690-5 (ISSN 1270-9840).
- [48] ASTM D5298-16 (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper, ASTM International, West Conshohocken, PA., USA. DOI: 10.1520/D5298-16.
- [49] Muhwezi, L. and Achanit, S. E. (2019). Effect of Sand on the Properties of Compressed Soil-Cement Stabilized Blocks. Colloid and Surface Science. 4(1), pp.1–6. DOI: 10.11648/j.css.20190401.11
- [50] Mullins, C.E. and Panayiotopoulos, K.P. (1984). The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress, J. Soil Sci., 35(3), pp. 459–468.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d528cfe8-e4c8-48ea-b4b7-dd9903fd83ff