PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the existence and Ulam-Hyers stability for implicit fractional differential equation via fractional integral-type boundary conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the existence of solutions for implicit fractional differential equations with fractional-order integral boundary conditions. We create the required conditions to ensure unique solution and Ulam-Hyers-Rassias stability. We also give examples to highlight the major findings.
Wydawca
Rocznik
Strony
art. no. 20230130
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Department of mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
  • Department of Mathematics, Faculty of Science, Lebanese International University, Saida, Lebanon
  • Department of Mathematics, Faculty of Science, The International University of Beirut, Beirut, Lebanon
Bibliografia
  • [1] Sh. M. Al-Issa, A. M. A. El-Sayed, and H. H. G. Hashem, An outlook on hybrid fractional modeling of a heat controller with multi-valued feedback control, Fractal Fract. 7 (2023), no, 10, 759, DOI: https://doi.org/10.3390/fractalfract7100759.
  • [2] S. M. Al-Issa, I. H. Kaddoura, and N. J. Rifai, Existence and Hyers-Ulam stability of solutions to the implicit second-order differential equation via fractional integral boundary conditions, J. Math. Computer Sci. 31 (2023), no. 1, 15–29.
  • [3] A. M. A. El-Sayed and Sh. M Al-Issa, On a set-valued functional integral equation of Volterra-Stiltjes type, J. Math. Computer Sci. 21 (2020), no. 4, 273–285.
  • [4] A. M. A. El-Sayed, H. H. G. Hashem and Sh. M Al-Issa, Analysis of a hybrid integro-differential inclusion, Bound. Value Probl. 2022 (2022), 68, DOI: https://doi.org/10.1186/s13661-022-01650-w.
  • [5] I. Podlubny and A. M. A. EL-Sayed, On two definitions of fractional calculus, Preprint UEF 03-69 (ISBN 80-7099-252-2), Solvak Academy of Science-Institute of Experimental phys., 1996.
  • [6] S. Z. Rida, A. M. A. El-Sayed, and A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model, J. Stat. Phys. 140 (2010), no. 4, 797–811.
  • [7] S. Abbas, M. Benchohra, and G. M. N’Guérékata, Topics in Fractional Differential Equations, Springer, New York, NY, vol. 27, 2012.
  • [8] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3, World Sci., New York, 2012.
  • [9] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier Science B.V., Amsterdam, 2006.
  • [10] V. Lakshmikantham, S. Leela, and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
  • [11] R. P Agarwal, M. Benchohra, and S. Hamani, Boundary value problems for fractional differential equations, Adv. Stud. Contemp. Math. 16 (2008), no. 2, 181–196.
  • [12] R. P. Agarwal, S. Arshad, D. O’Regan, and V. Lupulescu, Fuzzy fractional integral equations under compactness type condition, Fract. Calc. Appl. Anal. 15 (2012), no. 4, 572–590.
  • [13] A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions for multi-term non-autonomous fractional differential equations with polynomial coefficients, Electron. J. Differ. Equ. 2006 (2006), no. 129, 1–12.
  • [14] A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions for N-term non-autonomous fractional differential equations, Positivity 9 (2005), no. 2, 193–206.
  • [15] M. Belmekki and M. Benchohra, Existence results for fractional order semilinear functional differential equations, Proc. A. Razmadze Math. Inst. 146 (2008), 9–20.
  • [16] M. Benchohra, J. Henderson, S. K. Ntouyas, and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), no. 2, 1340–1350.
  • [17] M. Benchohra, J. R. Graef, and S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal. 87 (2008), no. 7, 851–863.
  • [18] M. Benchohra, S. Hamani, and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), no. 208, 1–12.
  • [19] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), no. 1, 84–89.
  • [20] A. M. A. El-Sayed, H. H. G. Hashem, and Sh. M Al-Issa, Study on the stability for implicit second-order differential equation via integral boundary conditions, J. Nonlinear Sci. Appl. 10 (2022), no. 2, 331–348.
  • [21] S. Chasreechai and J. Tariboon, Positive solutions to generalized second-order three-point integral boundary-value problems, Electron. J. Differential Equations 2011 (2011), no. 14, 14.
  • [22] M. Hu and L. Wang, Existence of solutions for a nonlinear fractional differential equation with integral boundary condition, Int. J. Math. Comp. Sc. 5 (2011), no. 1, 55–58.
  • [23] S. A. Murad and S. Hadid, An existence and uniqueness theorem for fractional differential equation with integral boundary condition, J. Frac. Calc. Appl. 3 (2012), no. 6, 1–9.
  • [24] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968.
  • [25] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat. 13 (1993), 259–270.
  • [26] M. A. Krasnosel’skii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl. Ser. 10 (1958), no. 2, 345–409.
  • [27] S. Abbas and M. Benchohra, On the generalized Ulam-Hyers-Rassias stability for Darboux problem for partial fractional implicit differential equations, Appl. Math. E-Notes 14 (2014), 20–28.
  • [28] S. M. Jung and K. S. Lee, Hyers-Ulam stability of first order linear partial differential equations with constant coefficients, Math. Inequal. Appl. 10 (2007), no. 2, 261–266.
  • [29] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Mathematics in Science and Engineering, Academic Press, London, New York, 1977.
  • [30] I. A. Rus, Ulam stability of ordinary differential equations. Stud. Univ. Babe’s-Bolyai, Math. LIV 4 (2009), 125–133.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5280378-56d0-4ff4-9f2e-24e6429bc01b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.