Identyfikatory
Warianty tytułu
Wpływ cykli zamrażania i rozmrażania na powłoki nakładane na powierzchnię materiałów aktywowanych alkalicznie
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
Abstrakty
This paper focuses on the possibility of applying selected types of coatings (synthetic and epoxy) on the surface of alkali-activated materials based on finely ground granulated blast furnace slag with an admixture of cement by-pass dust and silica fly ash. Admixtures represent 30% of the binder component (15% fly ash, 15% cement by-pass dust). The mixture is activated with anhydrous disodium metasilicate. The samples were categorized into two series samples stored in water and samples wrapped in foil. Following this, the surface of these two series was modified by two methods, namely brushing with a steel brush and roughening with a diamond wheel. The properties related to the adhesion of the coating to the surface were mainly investigated before and after 100 freeze-thaw cycles. The cross-cut method and pull-off test for adhesion determined the adhesion. The cross-cut test found that the synthetic coating was less susceptible to surface modification than the epoxy coating. The samples were exposed to 100 freeze-thaw cycles. Then, the cross-cut method was applied to the coated roughened surface and the results of this test were classified into category 3. During the determination of the adhesion of the coatings by the pull-off test on the roughened surface for both methods of sample storage, the character of breakage for the synthetic coating was of the cohesive type, thus it was the tensile strength of the materials, while for the epoxy coating, it was the adhesive breakage, thus it was the adhesion between the surface and the coating.
Czasopismo
Rocznik
Tom
Strony
art. no. 05
Opis fizyczny
Bibliogr. 27 poz., tab., wykr., zdj.
Twórcy
autor
- Technical University of Ostrava, Faculty of Civil Engineering, Department of Building Materials and Diagnostics of Structures,708 00 17. listopadu 2172/15, Czech Republic
autor
- Technical University of Ostrava, Faculty of Civil Engineering, Department of Building Materials and Diagnostics of Structures,708 00 17. listopadu 2172/15, Czech Republic
Bibliografia
- 1. B. C. Mendes, L. G. Pedroti, C. M. F. Vieira, M. Marvila, A. R. G. Azevedo, J. M. Franco de Carvalho and J. C. L. Ribeiro, “Application of eco-friendly alternative activators in alkali-activated materials: A review”. Journal of Building Engineering 35, 102010 (2021).
- 2. V. Bílek, J. Hurta, P. Done and L. Žídek, “Development of alkali-activated concrete for structures – Mechanical properties and durability”, Perspectives in Science 7, 190-194 (2016).
- 3. T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen and M. Illikainen, “One-part alkali-activated materials: A review”, Cement and Concrete Research 103, 21-34 (2018).
- 4. B. Vojvodíková, L. Procházka and J. Boháčová, “X-ray Diffraction of Alkali-Activated Materials with Cement ByPass Dust”, Crystals 11(7), 782 (2021).
- 5. A. Michalik, J. Babińska, F. Chyliński and A. Piekarczuk, “Ammonia in Fly Ashes from Flue Gas Denitrification Process and its Impact on the Properties of Cement Composites”, Buildings 9(11), 225 (2019).
- 6. M. Sajid, C. Bai, M. Aamir, Z. You, Z. Yan, & X. Lv, “Understanding the Structure and Structural Effects on the Properties of Blast Furnace Slag (BFS)”, ISIJ International 59(7), 1153–1166 (2019).
- 7. Y. Kang, C. Liu, Y. Zhang, H. Xing and M. Jiang, “Crystallization behavior of amorphous slag beads prepared by gas quenching of blast furnace slag”, Journal of Non-Crystalline Solids 500, 453–459 (2018).
- 8. Z. Giergiczny, “Fly ash and slag”, Cement and Concrete Research 124, 105826 (2019).
- 9. L. Pazdera, L. Topolar, M. Korenska, J. Smutny and V. Bilek, “Advanced Analysis of Acoustic Emission Parameters during the Concrete Hardening for Long Time,” in 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic.
- 10. R. Taha, A. Al-Rawas, A. Al-Harthy and A. Qatan, “Use of Cement Bypass Dust as Filler in Asphalt Concrete Mixtures”, Journal of Materials in Civil Engineering 14(4), 338-343 (2002).
- 11. K. Wojtacha-Rychter, M. Król, M. Gołaszewska, J. Całus-Moszko, M. Magdziarczyk and A. Smoliński, “Dust from chlorine bypass installation as cementitious materials replacement in concrete making”, Journal of Building Engineering 51, 104309 (2022).
- 12. Penta Chemical Unlinited–Chemikalie. Available online: https://www.pentachemicals.eu/chemikalie (accessed on 12 January 2024).
- 13. L. Procházka, J. Boháčová and B. Vojvodíková, “Effect of Admixtures on Durability and Physical-Mechanical Properties of Alkali-Activated Materials” Materials 15(6), 2010, (2022).
- 14. L. Procházka, B. Vojvodíková and J. Boháčová, “Possibilities of Application Cement By-Pass Dust into the Garden Architecture Elements”, Crystals 11(9), 1033 (2021).
- 15. L. Procházka, A. Brázdová, “Surface modification of alkali-activated materials with regard to durability”, in 16th International Scientific Conference of Civil and Environmental Engineering for PhD Students and Young Scientists, (proceedings 2024), in press.
- 16. ČSN EN ISO 12570 (730573) Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature.
- 17. EN ISO 2808 Paints and varnishes – Determination of film thickness; Office for Technical Standardization, Metrology and State Testing: Prague, Czech Republic (2020).
- 18. EN 1542 Products and systems for the protection and repair of concrete structures - Test methods - Measurement of bond strength by pull-off; Office for Technical Standardization, Metrology and State Testing: Prague, Czech Republic, (2000).
- 19. EN 196-1 Methods of Testing Cement—Part 1: Determination of Strength; Office for Technical Standardization, Metrology and State Testing: Prague, Czech Republic, (2005; pp. 5–40.).
- 20. CSN 722452 Frost Resistance Test of Mortar; Office for Technical Standardization, Metrology and State Testing: Prague, Czech Republic, 1970; Classifier 722452.
- 21. Open repository on ZENODO. https://doi.org/ 10.5281/zenodo.11453028
- 22. A. A. Almusallam, F. M. Khan, S. U. Dulaijan and O. S. B. Al-Amoudi, “Effectiveness of surface coatings in improving concrete durability”, Cement and Concrete Composites 25(4–5), 473–481 (2003).
- 23. Q. Tian, S. Wang, Y. Sui and Z. Lv, “Alkali-activated materials as coatings deposited on various substrates: A review”, International Journal of Adhesion and Adhesives 110, 102934 (2021).
- 24. S. Aydın, “A ternary optimisation of mineral additives of alkali activated cement mortars”, Construction and Building Materials 43, 131–138 (2013).
- 25. Z. Li, T. Lu, X. Liang, H. Dong and G. Ye, “Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes”, Cement and Concrete Research 135, 106107 (2020).
- 26. Y. Ma, X. Yang, J. Hu, Z. Zhang and H. Wang, “Accurate determination of the “time-zero” of autogenous shrinkage in alkali-activated fly ash/slag system”, Composites Part B: Engineering 177, 107367 (2019).
- 27. Z. Li, M. Nedeljkoviü, B. Chen, & G. Ye, “Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin”, Cement and Concrete Research 122, 30–41 (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5215c46-3ece-47bc-89c9-34caff57df93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.