Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed on the production and characterization of biochar derived from pebble-sized coconut shells, exploring its potential as an alternative fuel source. The pebble-sized material study is crucial for large-scale applications and real-world conditions. While smaller material sizes may offer efficiency in certain aspects, testing with pebble-sized offers a comprehensive understanding of how the pyrolysis process and biochar quality will perform in practical situations. Coconut shells, a widely available agricultural waste, were processed into pebblesized feedstock and subjected to pyrolysis under controlled conditions. Practical and inexpensive thermal processes were performed at five various temperatures, starting at 250 °C to 450 °C to achieve the quality of expected produced biochar. A consistent temperature increase of 10 °C per minute and a holding period of 120 minutes was applied at each run. The resulting biochar was characterized using GC-MS techniques analysis to assess its physical and chemical properties. The findings demonstrate that biochar produced from pebble-sized coconut shells exhibits promising characteristics, including high carbon content, low moisture, and a stable structure, making it a viable candidate for use as a sustainable and eco-friendly solid fuel. The biochar produced has an average moisture content of 3.98%, ash content of 2.89%, volatile content of 18.56%, fixed carbon content of 78.53%, and a heating value of approximately 28.56 MJ/kg. It is concluded that biochar from pebble-sized coconut shell material can be an essential ingredient in briquettes, serving as an alternative solid fuel. This research contributes to the growing interest in converting agricultural residues into valuable energy resources, offering a potential solution for reducing dependence on conventional fossil fuels and ultimately contributing to mitigating pollution due to biomass waste.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
251--259
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
- Mechanical Engineering Department, Universitas Negeri Medan, Medan 20221, North Sumatera, Indonesia
autor
- School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Seberang Perai Selatan, Penang 14300, Malaysia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
- 1. Ahmad, R.K. 2020. The influence of pyrolysis process conditions on the quality of coconut shells charcoal. Platform: A Journal of Engineering, 4(1), 73– 81. https://doi.org/10.61762/pajevol4iss1art7663
- 2. Ahmad, R.K., Sulaiman, S.A., Yusup, S., Dol, S.S., Inayat, M., Umar, H.A. 2022. Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Engineering Journal, 13(1), 101499. https://doi.org/10.1016/j.asej.2021.05.013
- 3. Armaroli, N., Balzani, V. 2011. The legacy of fossil fuels. Chemistry–An Asian Journal, 6(3), 768–784. https://doi.org/10.1002/asia.201000797
- 4. Azeta, O., Ayeni, A. O., Agboola, O., Elehinafe, F.B. 2021. A review on the sustainable energy generation from the pyrolysis of coconut biomass. Scientific African, 13, e00909. https://doi.org/10.1016/j.sciaf.2021.e00909
- 5. Behera, B., Dey, B., Balasubramanian, P. 2020. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresource Technology, 310, 123392. https://doi.org/10.1016/j.biortech.2020.123392
- 6. Castilla-Caballero, D., Barraza-Burgos, J., Gunasekaran, S., Roa-Espinosa, A., Colina-Márquez, J., Machuca-Martínez, F., Vázquez-Rodríguez, S. 2020. Experimental data on the production and characterization of biochars derived from coconut-shell wastes obtained from the Colombian Pacific Coast at low temperature pyrolysis. Data in brief, 28, 104855. https://doi.org/10.1016/j.dib.2019.104855
- 7. Cobb, A., Warms, M., Maurer, E.P., Chiesa, S. 2012. Low-tech coconut shell activated charcoal production. International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship, 7(1), 93–104. https://doi.org/10.24908/ijsle.v7i1.4244
- 8. Cheng, F., Li, X. 2018. Preparation and application of biochar-based catalysts for biofuel production. Catalysts, 8(9), 346. https://doi.org/10.3390/catal8090346
- 9. Dalimunthe, Y.K., Kasmungin, S., Sugiarto, E., Sugiarti, L., Lagrama, A. 2021. Making briquettes from waste of coconut shell and peanut shell. Indonesian Journal of Urban and Environmental Technology, 196–209. https://doi.org/10.25105/urbanenvirotech.v4i2.7417
- 10. Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248. https://doi.org/10.1016/j.jaap.2004.07.003
- 11. Ghosh, S.K., Ghosh, B.K. 2020. Fossil fuel consumption trend and global warming scenario: Energy overview. Glob. J. Eng. Sci, 5(2), 1–6. https://doi.org/10.33552/GJES.2020.05.000606
- 12. Hansen, J., Ruedy, R., Sato, M., Lo, K. 2010. Global surface temperature change. Reviews of Geophysics, 48(4). https://doi.org/10.1029/2010RG000345
- 13. Hasan, H., Gunawan, S., Silaban, R., Sinaga, F.I.S.H., Simanjuntak, J.P. 2022. An experimental study of liquid smoke and charcoal production from coconut shell by using a stove of indirect burning type. In Journal of Physics: Conference Series 2193(1), 012088. IOP Publishing. https://doi.org/10.1088/1742-6596/2193/1/012088
- 14. Hazman, N., Isa, N.M., Nasir, N.F., Nordin, N. 2023. Combustion of pulverized coconut shell in lab-scaled incinerator rig using CFD. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 103(1), 1–15. https://doi.org/10.37934/arfmts.103.1.115
- 15. Jones, A. P. 1999. Indoor air quality and health. Atmospheric Environment, 33(28), 4535–4564. https://doi.org/10.1016/S1352-2310(99)00272-1
- 16. Kan, T., Strezov, V., Evans, T.J. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185
- 17. Kotcher, J., Maibach, E., Choi, W.T. 2019. Fossil fuels are harming our brains: identifying key messages about the health effects of air pollution from fossil fuels. BMC Public Health, 19, 1–12. https://doi.org/10.1186/s12889-019-7373-1
- 18. Liu, Z., Dugan, B., Masiello, C.A., Gonnermann, H.M. 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. Plos One, 12(6), e0179079. https://doi.org/10.1371/journal.pone.0179079
- 19. Rafiq, M.K., Bachmann, R.T., Rafiq, M.T., Shang, Z., Joseph, S., Long, R. 2016. Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PloS One, 11(6), e0156894. https://doi.org/10.1371/journal.pone.0156894
- 20. Rout, T., Pradhan, D., Singh, R.K., Kumari, N. 2016. Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4(3), 3696–3705. https://doi.org/10.1016/j.jece.2016.02.024
- 21. Rudiyanto, B., Ulma, Z., Prasetyo, D.A., Piluharto, B. 2023. Utilization of cassava peel (Manihot utilissima) waste as an adhesive in the manufacture of coconut shell (Cocos nucifera) charcoal briquettes. International Journal of Renewable Engineering Development, 12(2), 270–276. https://doi.org/10.14710/ijred.2023.48432
- 22. Sadhukhan, A.K., Gupta, P., Saha, R.K. 2009. Modelling of pyrolysis of large wood particles. Bioresource Technology, 100(12), 3134–3139. https://doi.org/10.1016/j.biortech.2009.01.007
- 23. Sari, R.M., Wahono, S.K., Anwar, M., Rizal, W.A., Suryani, R., Suwanto, A. 2023. Pyrolysis of coconut shells for liquid smoke production: effect of integrated water scrubber on reduction of tar. Biomass Conversion and Biorefinery, 1–15. https://doi.org/10.1007/s13399-023-04675-y
- 24. Sarkar, J.K., Wang, Q. 2020. Different pyrolysis process conditions of south asian waste coconut shell and characterization of gas, bio-char, and biooil. Energies, 13(8), 1970. https://doi.org/10.3390/en13081970
- 25. Silaban, R., Simanjuntak, J.P., Tambunan, B.H., Putra, A.N. 2024. Production and characterization of liquid smoke from coconut shell waste as an effort to reduce the impact on environmental pollution. Ecological Engineering & Environmental Technology (EEET), 25(7), 162–170. https://doi.org/10.12912/27197050/188389
- 26. Simanjuntak, J.P., Daryanto, E., Tambunan, B.H. 2022. An operating parameter study of the biomass solid feedstock incinerator of fixed-bed type with two stage air supply. In Journal of Physics: Conference Series 2193(1), 012077. IOP Publishing. https://doi.org/10.1088/1742-6596/2193/1/012077
- 27. Simanjuntak, J.P., Anis, S., Syamsiro, M., Daryanto, E., Tambunan, B.H. 2021. Thermal energy storage system from household wastes combustion: System design and parameter study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 80(2), 115–126. https://doi.org/10.37934/arfmts.80.2.115126
- 28. Singh, P., Dubey, P., Younis, K., Yousuf, O. 2024. A review on the valorization of coconut shell waste. Biomass Conversion and Biorefinery, 14(7), 8115– 8125. https://doi.org/10.1007/s13399-022-03001-2
- 29. Sundaram, E.G., Natarajan, E. 2009. Pyrolysis of coconut shell: An experimental investigation. The Journal of Engineering Research (TJER), 6(2), 33– 39. https://doi.org/10.24200/tjer.vol6iss2pp33-39
- 30. Suriapparao, D.V., Vinu, R., 2018. Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste Biomass Valorization, 9, 465–477. https://doi.org/10.1007/s12649-016-9815-7
- 31. Tsai, W.T., Lee, M.K., Chang, Y.M. 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 76(1–2), 230˗237. https://doi.org/10.1016/j.jaap.2005.11.007
- 32. Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S. 2014. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146, 189–197. https://doi.org/10.1016/j.jenvman.2014.08.003
- 33. Zhang, Y., Chen, P., Liu, S., Peng, P., Min, M., Cheng, Y., Anderson, E., Zhoun, N., Fan, L., Liu, C., Chen, G., Liu,,Y, Lei, H., Li, B., Ruan, R. 2017. Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology, 230, 143–151. https://doi.org/10.1016/j.biortech.2017.01.046
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5211961-98cd-4d65-9aa2-80a40f5061f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.