Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The stable transportation of pulverized coal in the vertical pipe is significant for the operation of the gasifier. There are few studies on the flow characteristics and flow pattern transition of particles in vertical pipes with small diameters. This paper has modeled and analyzed the flow characteristic of powder in dense-phase pneumatic conveying through 25 mm vertical pipe using CFD. Firstly, the grid independence is verified to determine the optimal mesh size. Then, the influences of different solid loading ratios (SLRs) and conveying velocities on particle flow characteristics, flow stability, and flow pattern transition are investigated. The results show that the flow pattern in the vertical pipe changes from annular flow to uniform flow at high SLR and low conveying velocity. Moreover, the evolution regulation of resistance characteristics under different conveying velocities is further revealed. Considering the conveying stability and economic benefit, the most suitable conveying velocity is 6 m/s
Czasopismo
Rocznik
Tom
Strony
14--22
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
- School of Mathematics and Statistics, Huangshan University, Huangshan 245041, China
autor
- Faculty of Engineering and Quantity Surveying, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
Bibliografia
- 1. Klinzing, G.E. (2018). A review of pneumatic conveying status, advances and projections, Powder Technol. 333, 78–90. DOI: 10.1016/j.powtec.2018.04.012.
- 2. Konrad, K. (1986). Dense-phase pneumatic conveying: a review, Powder Technol. 49(1), 1–35. DOI: 10.1016/0032-5910(86)85001-X.
- 3. Rautiainen, A., Stewart, G., Poikolainen, V. & Sarkomaa, P. (1999). An experimental study of vertical pneumatic conveying, Powder Technol. 104, 139–150. DOI: 10.1016/S0032-5910(99)00056-X.
- 4. Ratnayake, C. (2005). A comprehensive scaling up technique for pneumatic transport systems, Philosophical Thesis.
- 5. Sun, S., Yuan, Z., Peng, Z., Moghtaderi, B. & Doroodchi, E. (2018). Computational investigation of particle flow characteristics in pressured dense phase pneumatic conveying systems, Powder Technol. 329, 241–251. DOI: 10.1016/j. powtec.2018.01.078.
- 6. Liang, C., Grace, J.R., Shen, L., Yuan, G., Chen, X. & Zhao, C. (2015). Experimental investigation of pressure letdown flow characteristics in dense-phase pneumatic conveying at high pressure, Powder Technol. 277, 171–180. DOI: 10.1016/j. powtec.2015.03.002.
- 7. Guo, X., Dai, Z., Gong, X. & Yu, Z. (2007). In Application of a capacitance solid mass flow meter in a dense phase pneumatic conveying system of pulverized coal, AIP Conference Proceedings. 320–327. DOI: 10.1063/1.2747448.
- 8. Cong, X., Guo, X., Lu, H., Gong, X., Liu, K., Sun, X. & Xie, K. (2013). Flow patterns of pulverized coal pneumatic conveying and time-series analysis of pressure fluctuations, Chem. Eng. Sci. 101, 303–314. DOI: 10.1016/j.ces.2013.05.058.
- 9. Wypych, P.W. & Yi, J. (2003). Minimum transport boundary for horizontal dense-phase pneumatic conveying of granular materials, Powder Technol. 129(1-3), 111–121. DOI: 10.1016/S0032-5910(02)00224-3.
- 10. Setia, G., Mallick, S.S., Pan, R. & Wypych, P.W. (2015). Modeling minimum transport boundary for fluidized dense-phase pneumatic conveying systems, Powder Technol. 277, 244–251. DOI: 10.1016/j.powtec.2015.02.050.
- 11. Taylor, T. (1998). Specific energy consumption and particle attrition in pneumatic conveying, Powder Technol. 95(1), 1–6. DOI: 10.1016/S0032-5910(97)03309-3.
- 12. Hilton, J. & Cleary, P. (2011). The influence of particle shape on flow modes in pneumatic conveying, Chem. Eng. Sci. 66(3), 231–240. DOI: 10.1016/j.ces.2010.09.034.
- 13. Jaworski, A.J. & Dyakowski, T. (2002). Investigations of flow instabilities within the dense pneumatic conveying system, Powder Technol. 125(2-3), 279–291. DOI: 10.1016/S0032-5910(01)00516-2.
- 14. Rao, S.M., Zhu, K., Wang, C.H. & Sundaresan, S. (2001). Electrical capacitance tomography measurements on the pneumatic conveying of solids, Ind. & Eng. Chem. Res. 40(20), 4216–4226. DOI: 10.1021/ie0100028.
- 15. Manjula, E., Ariyaratne, W.H., Ratnayake, C. & Melaaen, M.C. (2017). A review of CFD modelling studies on pneumatic conveying and challenges in modelling offshore drill cuttings transport, Powder Technol. 305, 782–793. DOI: 10.1016/j.powtec.2016.10.026.
- 16. Kuang, S., Li, K. & Yu, A. (2019). CFD-DEM simulation of large-scale dilute-phase pneumatic conveying system, Ind. & Eng. Chem. Res. 59(9), 4150–4160. DOI: 10.1021/acs. iecr.9b03008.
- 17. Tsuji, Y., Tanaka, T. & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol. 71(3), 239–250. DOI: 10.1016/0032-5910(92)88030-L.
- 18. Zhao, H. & Zhao, Y. (2020). CFD-DEM simulation of pneumatic conveying in a horizontal pipe, Powder Technol. 373, 58–72. DOI: 10.1016/j.powtec.2020.06.054.
- 19. Cai, J., Xu, J., You, M., Liang, C., Liu, D., Ma, J. & Chen, X. (2022). Flow Characteristics and Pattern transition of Different Pipe Diameters in Pneumatic Conveying for Gasifier, Chem. Eng. Res. and Des. 189, 282–295. DOI: 10.1016/j. cherd.2022.11.038.
- 20. Miao, Z., Kuang, S., Zughbi, H. & Yu, A. (2019). CFD simulation of dilute-phase pneumatic conveying of powders, Powder Technol. 349, 70–83. DOI: 10.1016/j.powtec.2019.03.031.
- 21. Kuang, S., Yu, A. & Zou, Z. (2009). Computational study of flow regimes in vertical pneumatic conveying, Ind. & Eng. Chem. Res. 48(14), 6846–6858. DOI: 10.1021/ie900230s.
- 22. Behera, N., Agarwal, V.K., Jones, M.G. & Williams, K.C. (2013). CFD modeling and analysis of dense phase pneumatic conveying of fine particles including particle size distribution, Powder Technol. 244, 30–37. DOI: 10.1016/j.powtec.2013.04.005.
- 23. Pu, W., Zhao, C., Xiong, Y., Liang, C., Chen, X., Lu, P. & Fan, C. (2010). Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure, Chem. Eng. Sci. 65(8), 2500–2512. DOI: 10.1016/j. ces.2009.12.025.
- 24. Wen, C.Y. (1966). Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 100–111. DOI: 10.1234/12345678.
- 25. Gidaspow, D., Bezburuah, R. & Ding, J. (1991). Hydrodynamics of circulating fluidized beds: kinetic theory approach; Illinois Inst. of Tech., Chicago, IL (United States), Dept. Chem. Engin. DOI: 10.1016/0032-5910(95)90055-1.
- 26. Syamlal, M., Rogers, W. & O’Brien, T.J. (1993). MFIX Documentation: Volume 1. Theory Guide. National Technical Information Service. Springfield. VA. (DOE/METC 9411004. NTIS/DE 940087).
- 27. Schaeffer, D.G. (1987). Instability in the evolution equations describing incompressible granular flow, J. Differ. Equations., 66(1), 19–50. DOI: 10.1016/0022-0396(87)90038-6.
- 28. Lun, C., Savage, S.B., Jeffrey, D. & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field, J. Fluid. Mech. 140, 223–256. DOI: 10.1017/S0022112084000586.
- 29. Johnson, P.C. & Jackson, R. (1987). Frictional-collisional constitutive relations for granular materials with application to plane shearing, J. Fluid. Mech. 176, 67–93. DOI: 10.1017/S0022112087000570.
- 30. Murali, R., Shahriman, A.B., Razlan, Z.M., Ahmad, W.K.W., Azizul, A.I., Rojan, M.A., Ma’arof, M.I.N., Radzuan, M.A., Hassan, M.A.S.M. & Ibrahim, Z. (2021). Design optimization of exhaust manifold’s length for Spark Ignition (SI) engine through CFD analysis on low-end rpm using Taguchi’s Method, 2051 (2021), 012051. DOI: 10.1088/1742-6596/2051/1/012051.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5193c1c-6048-4239-b690-374473b5d04c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.