PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidation resistance of surface-modified coatings for energy boilers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: definite the oxidation resistance of the new obtained multicomponent coatings of a zonal structure and properties enabling its long-term work at an elevated temperature and in an environment of aggressive products of fuels combustion. Design/methodology/approach: The selected results of high temperature corrosion resistance of HVOF sprayed coatings with binder composition are presented. The temperature of cyclic oxidation test was 887 K and the exposure time was 500 h. The macro and microstructure of coatings after and before corrosion test were analyzed by optics and scanning microscopy. The structure of binder composition and filling component, like chooses oxides are presented. The structure and chemical composition of coatings are investigated by SEM and EDX energy dispersive analysis method. Findings: The corrosion resistance of new elaborated coating with binder is presented. The multicomponent new elaborated coating can be applied in elevated temperature and aggressive environments for protection of water walls boilers or waste combustors. Research limitations/implications: If research is reported in the paper this section must be completed and should include suggestions for future research and any identified limitations in the research process. Practical implications: The new elaborated and presented coatings use to basic protection to wear and corrosion condition or modified surface of multilayer coatings in the energy boiler. The results of example application of presented sealing in 2012 year are shown. Originality/value: The elaboration of new corrosion resistance coatings with the modification of surface for the application in high temperature and corrosion enviroments and the presentation a degradation of new elaborated coating during the corrosion test.
Rocznik
Strony
75--81
Opis fizyczny
Twórcy
  • Higher School of Labor Protection Management, ul. Bankowa 8, 40-007 Katowice, Poland
  • Faculty of Materials Science and Metallurgy, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] P.J. Hoop, C. Allen, The high temperature erosion of commercial thermally sprayed metallic and cermet coatings by solid particles, Wear (1999) 334-341.
  • [2] J. Stringer, Practical experience with waste at elevated temperatures in coal combustion systems, Wear (1995) 186-187.
  • [3] B.Q. Wang, Erosion-corrosion of thermal sprayed coatings in FBC boilers, Wear 199 (1996) 24-32.
  • [4] B.R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J.P. Shingledecker, B. Vitalis, U.S. Program on materials technology for ultrasupercritical stream coal -fired power plants, Forschungszentrum Julich GmbH, J. Lecomte- Beckers, M. Carton, F. Schuert, P.J. Ennis (Eds.), Materials for Advanced Power Engineering, Energy Technology 53 (2006) 893-915.
  • [5] V. Higuera Hidalgo, J. Belzunce Varela, A Ceries Mendez, S. Poreda Martinez, High temperature erosion wear or flame and plasma-sprayed nickel-chromium coating under simulated coal-fired boiler atmospheres, Wear 247 (2001) 214-222.
  • [6] V. Higuera Hidalgo, J. Belzunce Varela, A Ceries Mendez, S. Poreda Martinez, A comparative study of high temperature erosion wear of plasma sprayed NiCrSiBFe and WC-NiCrBSiFe coating under simulated coal-fired boiler conditions, Tribology International 34 (2001) 161-169.
  • [7] C.H. Xu, W. Gao, H. Gong, Oxidation behaviour of FeAl intermetallics, The effects of Y and/or Zr on isothermal oxidation kinetics, Intermetallics 8 (2000) 769-779.
  • [8] B. Formanek, B. Szczucka-Lasota, High-temperature corrosion resistance of NiAl(Cr)-Al2O3 coating in N2=9%O2=0.2%HCl+0.08%SO2 atmosphere, Journal of Achivements in Materials and Manufacturing Engineering 43 (2010) 586-596.
  • [9] A. Hernas, Materials and technology for the ultracritical boilers and west combustion, SITPH, Katowice 2009 (in Polish).
  • [10] A. Verstak, B.Q. Wang, V. Baranovski, A. Bielaiev, Composite coating for elevated temperature erosioncorrosion protection in fossil-fueled boilers, Proceedings of the Conference Corrosion’98, San Diego, 1998, 193.
  • [11] Bi-lan Lin, Jin-tang Lu, Gang Kong, Synergistic corrosion protection for galvanized steel by phosphating and sodium silicate post-sealing, Surface and Coatings Technology 202 (2008) 1831-1838.
  • [12] S. Ahmaniemi, M. Vippola, P. Vuoristo, T. Mantyla, M. Buchmann, R. Gadow, Residual stresses in aluminium phosphate sealed plasma sprayed oxide coatings and their effect on abrasive wear, Wear 252 (2002) 614-623.
  • [13] K.H. Hass, S. Amberg-Szwab, K. Rose, Functionalized coating materials based on inorganic-organic polymers, Thin Solid Films 351(1999) 198-203.
  • [14] M. Vippola, J. Vuorinen, P. Vuoristo, T. Lepisto, T. Mantyla, Thermal analysis of plasma sprayed oxide coatings sealed with aluminium phosphate, Journal of the European Ceramic Society 22 (2002) 1937-1946.
  • [15] E.D. Rodeghiero, B.C. Moore, B.S. Wolkenberg, M. Wuthenow, O.K. Tse, E.P. Giannelis, Sol-gel synthesis of ceramic matrix composites, Materials Science and Engineering A 244 (1998) 11-21.
  • [16] K.H. Haas, K. Rose, Hybrid inorganic/organic polymers with nanoscale building blocks, Reviews on Advanced Materials Science 5 (2003) 47-52.
  • [17] J.M. Keijman, A review of inorganic coatings - a challenge for the protective coatings industry, Oslo, 1999.
  • [18] P. Judeinstein, C. Sanchez, Hybrid organic-inorganic materials, a land of multidisciplinarity, Journal Material Chemistry 6/4 (1996) 511-525.
  • [19] B. Szczucka-Lasota, High temperature corrosion resistance of new materials for engeenering in power plant, Grant 2009-2011 of Higher School of Labor Protection Management.
  • [20] B. Formanek, B. Szczucka-Lasota, B. Chmiela, et al., The hybryd ceramic composite CMCs coatings for the corrosion enviroments, Protection of Corrosion 53/4-5 (2010) 266-270 (in Polish).
  • [21] H. Pokhmurska, B. Wielage, T. Grund, S. Schuberth, V. Pokhmurskii, M. Student, G.V. Karpenko Gas-Abrasive Resistance of Arc Sprayed Dispersion-Hardened Coatings Obtained from Iron-Based Cored Wires, International Thermal Spray Conference, Las Vegas, 2009.
  • [22] A. Pereira da Silva, B. Szczucka-Lasota, B. Formanek, T. Węgrzyn, Corrosion Resistance of the Thermal Sprayed HVOF and PMR Coatings with Feal Phases, Proceedings of the 4th Engineering Conference "Engineering’2007 - Innovation and development", Universidade da Beira Interior, Covilhá, 2007, 124-128.
  • [23] L.A. Dobrzański, E. Jonda, K. Lukaszowicz, A. Kritz, Structure and tribological behavior of surface layer of laser modified X40CrMoV5-1 steel, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 343-346.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d518df56-90d5-4cbb-afe4-02b9cf0883f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.