PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical expressions for effective weighting functions used during simulations of water hammer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For some time, work has been underway aimed at significant simplification of the modelling of hydraulic resistance occurring in the water hammer while maintaining an acceptable error. This type of resistance is modelled using a convolution integral, among others, from local acceleration of a liquid and a certain weighting function. The recently completed work shows that during efficient calculations of the convolution integral, the effective weighting function used does not have to be characterised by large convergence with a classical function (according to Zielke during laminar flow and to Vardy-Brown during turbulent flow). However, it must be a sum of at least two or three exponential expressions so that the final results of the simulation could be considered as satisfactory. In this work, it has been decided to present certain analytical formulas using which it will be possible to determine the coefficients of simplified effective weighting functions in a simple direct way.
Rocznik
Strony
1029--1040
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
  • 1. Adamkowski A., Lewandowski M., 2006, Experimental examination of unsteady friction models for transient pipe flow simulation, Journal of Fluids Engineering, ASME, 128, 6, 1351-1363
  • 2. Adamkowski A., Lewandowski M., 2009, A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines, Journal of Fluids Engineering, ASME, 131, 7, paper 071302
  • 3. Adamkowski A., Lewandowski M., 2012, Investigation of hydraulic transients in a pipeline with column separation, Journal of Hydraulic Engineering, ASCE, 138, 11, 935-944
  • 4. Bergant A., Simpson A.R., Tijsseling A.S., 2006, Water hammer with column separation: A historical review, Journal of Fluids and Structures, 22, 2006, 135-171
  • 5. Brunone B., Golia U.M., Greco M., 1991, Some remarks on the momentum equations for fast transients, Proceedings of International Meeting on Hydraulic Transients with Column Separation, 9th Round Table, IAHR, Valencia, Spain, 201-209
  • 6. Dailey J.W., Hankey W.L., Olive R.W., Jordaan J.M., 1956, Resistance coefficient for accelerated and decelerated flows through smooth tubes and orifices, Journal of Basic Engineering, ASME, 78, 1071-1077
  • 7. Henclik S., 2015, A numerical approach to the standard model of water hammer with fluidstructure interaction, Journal of Theoretical and Applied Mechanics, 53, 3, 543-555
  • 8. Kagawa T., Lee I., Kitagawa A., Takenaka T., 1983, High speed and accurate computing method of frequency-dependent friction in laminar pipe flow for characteristics method (in Japanese), Transactions of the Japan Society of Mechanical Engineers, Part A, 49, 447, 2638-2644
  • 9. Karadzić U., Bulatović V., Bergant A., 2014, Valve-induced water hammer and column separation in a pipeline apparatus, Strojniˇski vestnik – Journal of Mechanical Engineering, 60, 11, 742-754
  • 10. Keramat A., Tijsseling A.S., Hou Q., Ahmadi A., 2012, Fluid-structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures, 28, 1, 434-456
  • 11. Keramat A., Kolahi A.G., Ahmadi A., 2013, Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson’s ratio, Journal of Fluids and Structures, 43, November, 164-178
  • 12. Keramat A., Tijsseling A.S., 2012, Waterhammer with column separation, fluid-structure interaction and unsteady friction in a viscoelastic pipe, Proceedings of 11th International Conference on Pressure Surges, BHR Group, Lisbon, Portugal, October 24-26, 443-460
  • 13. Loureiro D., Ramos H., 2003, A modified formulation for estimating the dissipative effect of 1-d transient pipe flow, [In:] Pumps, Electromechanical Devices and Systems Applied to Urban Management, Cabrera E. et al. (Edit.), A.A. Baklema Publishers, The Netherlands, 2, 755-763
  • 14. Pezzinga G., Brunone B., Cannizzaro D., Ferrante M., Meniconi S., Berni A., 2014, Two-dimensional features of viscoelastic models of pipe transients, Journal of Hydraulic Engineering, 140, 8, Art. No. 04014036
  • 15. Reddy H.P., Silva-Araya W.F., Chaudhry M.H., 2012, Estimation of decay coefficients for unsteady friction for instantaneous, acceleration-based models, Journal of Hydraulic Engineering, 138, 260-271
  • 16. Schohl G.A., 1993, Improved approximate method for simulating frequency – dependent friction in transient laminar flow, Journal of Fluids Engineering, ASME, 115, September, 420-424
  • 17. Soares A.K., Martins N.M.C., Covas D.I.C., 2012, Transient vaporous cavitation in viscoelastic pipes, Journal of Hydraulic Research, 50, 2, 228-235
  • 18. Soares A.K., Martins N., Covas D.I.C., 2015, Investigation of transient vaporous cavitation: experimental and numerical analyses, Procedia Engineering, 119, 235-242
  • 19. Trikha A.K., 1975, An efficient method for simulating frequency-dependent friction in transient liquid flow, Journal of Fluids Engineering, ASME, 97, 1, 97-105
  • 20. Urbanowicz K., 2012, New approximation of unsteady friction weighting functions, Proceedings of 11th International Conference on Pressure Surges, Lisbon, Portugal, October 24-26, 477-492
  • 21. Urbanowicz K., 2015, Simple modelling of unsteady friction factor, Proceedings of 12th International Conference on Pressure Surges, Dublin, Ireland, 18-20 November, 113-130.
  • 22. Urbanowicz K., Firkowski M., Zarzycki Z., 2016, Modelling water hammer in viscoelastic pipelines: short brief, Journal of Physics: Conference Series, 760, paper 012037
  • 23. Urbanowicz K., Zarzycki Z., 2012, New efficient approximation of weighting functions for simulations of unsteady friction losses in liquid pipe flow, Journal of Theoretical and Applied Mechanics, 50, 2, 487-508
  • 24. Urbanowicz K., Zarzycki Z., 2015, Improved lumping friction model for liquid pipe flow, Journal of Theoretical and Applied Mechanics, 53, 2, 295-305
  • 25. Urbanowicz K., Zarzycki Z., Kudźma S., 2012, Universal weighting function in modeling transient cavitating pipe flow, Journal of Theoretical and Applied Mechanics, 50, 4, 889-902
  • 26. Vardy A.E., Brown J.M.B., 1996, On turbulent unsteady, smooth – pipe friction, Proceedings of 7th International Conference on Pressure Surges, BHR Group, Harrogate, United Kingdom, 289-311
  • 27. Vardy A.E., Brown J.M.B., 2003, Transient turbulent friction in smooth pipe flows, Journal of Sound and Vibration, 259, 5, 1011-1036
  • 28. Vardy A.E., Brown J.M.B., 2004, Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270, 233-257
  • 29. Vardy A.E., Brown J.M.B., 2007, Approximation of turbulent wall shear stresses in highly transient pipe flows, Journal of Hydraulic Engineering, 133, 11, 1219-1228
  • 30. Vardy A.E., Brown J.M.B., 2010, Evaluation of unsteady wall shear stress by Zielke’s method, Journal of Hydraulic Engineering, 136, 453-456
  • 31. V´ıtkovsky J., Lambert M., Simpson A., Bergant A. ´ , 2000, Advances in unsteady friction modeling in transient pipe flow, Proceedings of 8th International Conference on Pressure Surges, BHR Group, Hague, Holland, 471-482
  • 32. V´ıtkovsky J.P., Stephens M.L., Bergant A., Simpson A.R., Lambert M.F ., 2004, Efficient and accurate calculation of Zielke and Vardy–Brown unsteady friction in pipe transients, Proceedings of 9th International Conference on Pressure Surges, BHR Group, Chester, United Kingdom, 405-419
  • 33. Weinerowska-Bords K., 2015, Alternative approach to convolution term of viscoelasticity in equations of unsteady pipe flow, Journal of Fluids Engineering, ASME, 137, 5, paper 054501
  • 34. Zanganeh R., Ahmadi A., Keramat A., 2015, Fluid-structure interaction with viscoelastic supports during waterhammer in a pipeline, Journal of Fluids and Structures, 54, April, 215-234
  • 35. Zarzycki Z., Kudźma S., Urbanowicz K., 2011, Improved method for simulating transients of turbulent pipe flow, Journal of Theoretical and Applied Mechanics, 49, 1, 135-158
  • 36. Zarzycki Z., 1997, Hydraulic resistance of unsteady turbulent liquid flow in pipes, Proceedings of 3rd International Conference on Water Pipeline Systems, BHR Group, Hague, Holland, 163-178
  • 37. Zarzycki Z., 2000, On weighting function for wall shear stress during unsteady turbulent flow, Proceedings of 8th International Conference on Pressure Surges, BHR Group, Hague, Holland, 39, 529-534
  • 38. Zarzycki Z., Urbanowicz K., 2006, Modelling of transient flow during water hammer considering cavitation in pressure pipes (in Polish), Chemical and Process Engineering, 27, 3, 915-933
  • 39. Zielke W., 1968, Frequency-dependent friction in transient pipe flow, Journal of Basic Engineering, ASME, 90, 1, 109-115
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d516a487-319b-4c16-9ddf-cbf49b04862a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.