PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design of an optimal fuzzy controller of an under-actuated manipulator based on teaching-learning-based optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an optimal fuzzy controller based on the Teaching-Learning-Based Optimization (TLBO) algorithm has been presented for the stabilization of a two-link planar horizontal under-actuated manipulator with two revolute (2R) joints. For the considered fuzzy control method, a singleton fuzzifier, a centre average defuzzifier and a product inference engine have been used. The TLBO algorithm has been implemented for searching the optimum parameters of the fuzzy controller with consideration of time integral of the absolute error of the state variables as the objective function. The proposed control method has been utilized for the 2R under-actuated manipulator with the second passive joint wherein the model moves in the horizontal plane and friction forces have been considered. Simulation results of the offered control method have been illustrated for the stabilization of the considered robot system. Moreover, for different initial conditions, the effectiveness and the robustness of the mentioned strategy have been challenged.
Rocznik
Strony
166--172
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, P.O. Box: 78185-439, Iran
  • Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, P.O. Box: 78185-439, Iran
Bibliografia
  • 1. Baghban A., Kardani M.N., Mohammadi A.H. (2018), Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models, Fuel, 232, 620–631.
  • 2. Craig J.J. (1989), Introduction to robotics. Mechanics and Control, Boston, MA, USA, Addison-Wesley Longman Publishing Co, Inc.
  • 3. Deng Y., Zhang X., Im N., Zhang G., Zhang Q. (2019), Eventtriggered robust fuzzy path following control for underactuated ships with input saturation, Ocean Engineering, 186(1), 106122.
  • 4. He G.P., Wang Z.L., Zhang J., Geng Z.Y. (2014), Characteristics analysis and stabilization of a planar 2R underactuated manipulator, Robotica, Cambridge University Press, 1–17.
  • 5. Ho H.F., Wong Y.K., Rad A.B. (2007), Robust fuzzy tracking control for robotic manipulator, IFSA World Congress and 20th NAFIPS International Conference, 801–816.
  • 6. Karimi M., Safarinejadian B. (2011), On-line control of the inverted pendulum with type-2 fuzzy logic controller, 2nd International Conference on Control, Instrumentation and Automation (ICCIA), 429–433.
  • 7. Khooban M.H. (2014), Design an intelligent proportional-derivative (PD) feedback linearization control for nonholonomic-wheeled mobile robot, Journal of Intelligent & Fuzzy Systems, 26, 1833–1843.
  • 8. Kumar M., Mittal M.L., Soni G., Joshi D. (2018), A hybrid TLBO-TS algorithm for integrated selection and scheduling of projects, Computers & Industrial Engineering, 119, 121–130.
  • 9. Lim C.M., Hiyama T. (1991), Application of fuzzy logic control to a manipulator, IEEE Transactions on Robotics and Automation I, 5, 688–691.
  • 10. Lin X., Nie J., Jiao Y., Liang K., Li H. (2018), Adaptive fuzzy output feedback stabilization control for the underactuated surface vessel, Applied Ocean Research, 74(1), 40–48.
  • 11. Ma X.J., Sun Z.Q., He Y.Y. (1998), Analysis and design of fuzzy controller and fuzzy observer, IEEE Transactions on Fuzzy Systems, 6(1), 41–50.
  • 12. Mahindrakar A.D., Rao S., Banavar R.N. (2006), Point-to-point control of a 2R planar horizontal underactuated manipulator, Mechanism and Machine Theory, 41, 838–844.
  • 13. Mahmoodabadi M.J., Danesh N. (2017), Gravitational search algorithm based fuzzy control for a nonlinear ball and beam system, Journal of Control and Decision, 5(3), 229–240.
  • 14. Mahmoodabadi M.J., Mottaghi M.B.S., Mahmodinejad A. (2016), Optimum design of fuzzy controllers for nonlinear systems using multi-objective particle swarm optimization, Journal of Vibration and Control, 22(3), 769–783.
  • 15. Naghibi S.R., Pirmohamadi A.A., Moosavian S.A.A. (2017), Fuzzy MTEJ controller with integrator for control of underactuated manipulators, Robotics and Computer-Integrated Manufacturing, 48(1), 93–101.
  • 16. Nguyen A.T., Sentouh C., Popieul J.C. (2018), Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments, Journal of the Franklin Institute, 355(18), 9374– 9395.
  • 17. Patel P., Nakum B., Abhishek K., Kumar V.R., Kumar A. (2018), Optimization of Surface Roughness in Plasma Arc Cutting of AISID2 Steel Using TLBO, Materials Today: Proceedings, 5 (9), 18927– 18932.
  • 18. Rao K.V. (2019), Power consumption optimization strategy in micro ball-end milling of D2 steel via TLBO coupled with 3D FEM simulation, Measurement, 132, 68–78.
  • 19. Rao R.V., Savsani V.J., Vakharia D.P. (2011), Teaching-learningbased optimization: a novel method for constrained mechanical design optimization problems, Computer-Aided Design, 43, 303–315.
  • 20. Rao R.V., Savsani V.J., Vakharia D.P. (2012), Teaching-learningbased optimization: an optimization method for continuous non-linear large scale problems, Information Sciences, 183(1), 1–12.
  • 21. Spong M.W., Hutchinson S., Vidyasagar M. (2005), Robot modeling and control, John Wiley & Sons, Inc.
  • 22. Sugeno M., Kang G.T. (1988), Structure identification of fuzzy model, Fuzzy Sets and Systems, 28(1), 15–33.
  • 23. Takagi T., Sugeno M. (1985), Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15 (1), 116–132.
  • 24. Vahidi-Moghaddam A., Rajaei A., Ayati M. (2019), Disturbanceobserver-based fuzzy terminal sliding mode control for MIMO uncertain nonlinear systems, Applied Mathematical Modelling, 70(1), 109–127.
  • 25. Wang L.X. (1996), A Course in Fuzzy Systems and Control, Upper Saddle River, United States Prentice-Hall International, Inc.
  • 26. Wang N., Sun Z., Yin J., Zou Z., Sud S.F. (2019), Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns, Ocean Engineering, 176(1), 57–64.
  • 27. Yi J., Yubazaki N., Hirota K. (2001), Stabilization control of ball and beam systems, IFSA World Congress and 20th NAFIPS International Conference, 2229–2234.
  • 28. Yoo B.K., Ham W.C. (2000), Adaptive control of robot manipulator using fuzzy compensator, IEEE Transactions on Fuzzy Systems, 8(2), 186–199.
  • 29. Yu C., Xiang X., Lapierre L., Zhang Q. (2017), Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle, Ocean Engineering, 146(1), 457–467.
  • 30. Zakeri E., Moezi S.A., Eghtesad M. (2019), Optimal interval type-2 fuzzy fractional order super twisting algorithm: A second order sliding mode controller for fully-actuated and under-actuated nonlinear systems, ISA Transactions, 85(1), 13–32.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5162512-5b66-422d-86a4-8bacf63095ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.