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Abstract: In this paper, an optimal fuzzy controller based on the Teaching-Learning-Based Optimization (TLBO) algorithm has been pre-
sented for the stabilization of a two-link planar horizontal under-actuated manipulator with two revolute (2R) joints. For the considered 
fuzzy control method, a singleton fuzzifier, a centre average defuzzifier and a product inference engine have been used. The TLBO algo-
rithm has been implemented for searching the optimum parameters of the fuzzy controller with consideration of time integral of the abso-
lute error of the state variables as the objective function. The proposed control method has been utilized for the 2R under-actuated ma-
nipulator with the second passive joint wherein the model moves in the horizontal plane and friction forces have been considered. Simula-
tion results of the offered control method have been illustrated for the stabilization of the considered robot system. Moreover, for different 
initial conditions, the effectiveness and the robustness of the mentioned strategy have been challenged. 

Keywords: Optimal controller, Fuzzy control, Teaching-learning-based optimization, Under-actuated system, 2R planar horizontal manipu-
lator 

1. INTRODUCTION  

In the last two decades, many researchers have shown inter-
est in the control and stabilization of under-actuated manipulators 
and it has remained an open problem till now. A system with lower 
number of control inputs than degrees of freedom is said to be an 
under-actuated one. Utilizing the under-actuated systems is eco-
nomical because of energy saving, reduced cost and weight, alt-
hough they have the disadvantage that the control of these sys-
tems is more complicate. Furthermore, if one of actuators of a fully 
actuated system fails, it is convenient to have a controller for the 
under-actuated system in this situation.  

A popular and powerful solution to attack this problem is utiliz-
ing control methods based on fuzzy logic. These techniques are 
implemented to design stabilizers according to the synthesis of 
fuzzy IF-THEN rules heuristically determined by the knowledge 
and experience of an expert. There are variant versions of the 
fuzzy control methods based on the kinds of fuzzifiers, the defuzz-
ifiers and the inference engines applied by researchers. For in-
stance, in the field of fuzzy control of under-actuated systems, 
Jianiang et al. (2001) presented a new fuzzy controller based on a 
sum-product inference engine system for stabilization of a ball and 
beam system. Ho et al. (2007) proposed a stable adaptive fuzzy-
based tracking control for a robot manipulator. Karimi et al. (2011) 
introduced a new type-2 fuzzy logic controller to handle a non-
linear inverted pendulum system.  Mahmoodabadi et al. (2016) 
implemented an optimal fuzzy technique to stabilize two nonlinear 
systems. Mahmoodabadi and Danesh (2017) applied a fuzzy ap-
proach based on the gravitational search algorithm to set the state 
variables of a ball and beam system. Caoyang et al. (2017) intro-
duced nonlinear guidance and fuzzy control for three-dimensional 

path following of an autonomous underwater vehicle. Naghibi et 
al. (2017) presented a fuzzy controller with integrator for control of 
manipulators. Nguyen et al. (2018) designed and experimented 
fuzzy steering control for autonomous vehicles’ saturation. Lin et 
al. (2018) exhibited the performance of the adaptive fuzzy output 
feedback stabilization control for the surface vessel. Zakeri et al. 
(2019) introduced an optimal interval type-2 fuzzy fractional order 
super twisting algorithm for stabilization of dynamical systems. 
Deng et al. (2019) displayed event-triggered robust fuzzy path 
following control for ships with input saturation. Wang et al. (2019) 
represented fuzzy unknown observer-based robust adaptive path 
following the control of underactuated surface vehicles subject to 
multiple unknowns. Vahidi-Moghaddam et al. (2019) organized 
disturbance-observer-based fuzzy terminal sliding mode control 
for uncertain nonlinear systems. 

On the other hand, the synthesis of control policies has been 
presented as optimization problems of certain performance 
measures of the controlled systems. A very effective means of 
solving such optimum controller design problems is utilizing evolu-
tionary algorithms such as Teaching-Learning-Based Optimization 
(TLBO). This algorithm as a new nature-inspired optimization 
algorithm works based on the influence of a teacher on its learn-
ers. It is also a population-based method and uses a population of 
solutions to find the optimum global solution. At first, Rao et al. 
(2011) showed the better performance of TLBO over other nature-
inspired optimization methods for the constrained benchmark 
functions and mechanical design problems. Furthermore, Rao et 
al. (2012) proposed it to find a solution for continuous non-linear 
large scale optimization problems. Khoban (2014) used TLBO for 
optimum design of a feedback linearization controller to achieve 
the best trajectory tracking for non-holonomic wheeled mobile 
robots. 



DOI 10.2478/ama-2019-0022           acta mechanica et automatica, vol.13 no.3 (2019) 

167 

This research tries to present an optimal fuzzy controller 
based on a TLBO algorithm for stabilization of a two-link under-
actuated manipulator. For this fuzzy control method, a singleton 
fuzzifier, a centre average defuzzifier and a product inference 
engine have been used. The TLBO algorithm has been designed 
for searching the optimum design variables of the fuzzy controller. 
The proposed control method has been utilized for the 2R under-
actuated manipulator with a second passive joint wherein the 
model moves in the horizontal plane and the friction forces have 
been considered.  

The rest of the paper is organized as follows. The mathemati-
cal model of the considered under actuated manipulator is ex-
plained in Section 2. The descriptions of the considered fuzzy 
system and the proposed fuzzy controller are stated in Sections 3 
and 4, respectively. Moreover, Section 4 briefly introduces the 
TLBO algorithm, design variables and objective functions. The 
introduced fuzzy controller is implemented on the 2R planar un-
der-actuated manipulator in Section 6. Furthermore, the optimiza-
tion of the control parameters by the TLBO algorithm and the sim-
ulation results are included in this section. Finally, the conclusion 
is made in Section 7. 

2. THE MATHEMATICAL MODEL  
OF THE UNDER-ACTUATED MANIPULATOR 

The configuration of the considered manipulator is illustrated 
in Fig. 1, which has two degrees of freedom with revolute joints 
and two links that move on the frictional horizontal plane. The first 
revolute joint is active whereas the second one is considered 
as a passive pin. 

If the generalized coordinates qi, i = 1,2  are regarded as 
the joint angles, then the dynamic model of the system can be 
written as follow (Spong et al., 2005). 

 

Fig 1. A schematic of the 2R planar under-actuated manipulator  
with the second passive joint 

𝑀(𝑞)𝑞̈ + ℎ(𝑞, 𝑞̇) = 𝜏                                                              (1) 

where, q̇ is the vector of the generalized velocities,  q̈ is the vec-

tor of the generalized accelerations,  M(q) ∈ R2×2 denotes the 
inertia matrix and h(q̇, q̈) contains the centrifugal, Coriolis and 
possibly gravitational terms; although here, the gravitational terms 
have not been considered because the manipulator has been 
assumed to move on the horizontal plane. 

In order to simplify the motion equations, the following con-
stant parameters are defined. 

𝑧1 = 𝑚1𝑟1
2 + 𝑚2𝑙1

2 + 𝐼1                                                           (2) 

𝑧2 = 𝑚2𝑟2
2 + 𝐼2                                                                         (3) 

𝑧3 = 𝑚2𝑙1𝑟2                                                                               (4) 

where, m1 and m2 illustrate the link masses, l1 and l2 show the 

link lengths, I1 and I2 are the moments of inertia, and r1 and r2 
depict the centers of the masses. Hence, the elements 

of M(q) and h(q, q̇) are considered as follow: 

𝑚11 = 𝑧1 + 𝑧2 + 2𝑧3 Cos 𝑞2                                                   (5) 

𝑚12 = 𝑧2 + 𝑧3 Cos 𝑞2                                                              (6) 

𝑚21 = 𝑚12                                                                                (7) 

𝑚22 = 𝑧2                                                                                    (8) 

ℎ1 = −𝑧3(2𝑞̇1𝑞̇2 + 𝑞̇2
2) Sin 𝑞2                                                (9) 

ℎ2 = 𝑧3𝑞̇1
2 Sin 𝑞2                                                                     (10) 

It must be mentioned that both the frictions (Coulomb and vis-

cous) are considered for the passive joint. The viscous friction FV 
is defined as proportional to the velocity of the second joint. 

𝐹𝑉 = 𝑏𝑞̇                                                                                    (11) 

where, b is a viscous friction constant. The Coulomb friction Fc is 
regarded as constant with a sign dependence on the joint velocity 
and is given by: 

𝐹𝑐 =  𝑆𝐺𝑁(𝑞̇) 𝑐                                                                       (12) 

where, c is the Coulomb friction constant. In order to eliminate the 
chattering phenomena caused by the sign function, it will be re-
placed by the following saturation function.  

𝑠𝑎𝑡(𝑞 ̇ ) =  {  

1                                      𝑞̇ > 𝑘
−1                                      𝑞̇ < −𝑘
𝑞̇                           − 𝑘 < 𝑞̇ < 𝑘

                   (13) 

where, k is a positive constant; and here, regarded as k = 0.01. 
Therefore, the equations of motion can be formulated as follows 
(Spong et al., 2005). 

𝑚11𝑞̈1 + 𝑚12𝑞̈2 + ℎ1 = 𝜏 − 𝑠𝑎𝑡(𝑞̇1)𝑐1 − 𝑏1𝑞̇1                 (14) 

𝑚21𝑞̈1 + 𝑚22𝑞̈2 + ℎ2 = −𝑠𝑎𝑡(𝑞̇2)𝑐2 − 𝑏2𝑞̇2                    (15) 

Moreover, the state-space equations are written as follows: 

[

𝑦̇1

𝑦̇2

𝑦̇3

𝑦̇4

] =

[
 
 
 
 
0              1              0             0

0     −
𝑚12

𝑚22
𝑏1       0          𝑏2 

0             0               0             1

0       
𝑚12

𝑚11
𝑏1          0     − 𝑏2 ]

 
 
 
 

[

𝑦1

𝑦2

𝑦3

𝑦4

] +

[
 
 
 
 

0
1

𝑚11−𝑚12
2 𝑚22⁄

0

−
𝑚12 𝑚11⁄

𝑚22−𝑚12
2 𝑚11⁄

 ]
 
 
 
 

𝜏 +  

[
 
 
 
 

0
𝑐1𝑠𝑎𝑡(𝑦2)−ℎ1+𝑚12 𝑚22⁄ (𝑐2𝑠𝑎𝑡(𝑦4)+ℎ2

𝑚11−𝑚12
2 𝑚22⁄

0
−𝑐2𝑠𝑎𝑡(𝑦4)−ℎ2−𝑚12 𝑚11(−𝑐1𝑠𝑎𝑡(𝑦2)−ℎ1)⁄

𝑚22−𝑚12
2 𝑚11⁄ ]

 
 
 
 

                               (16) 
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where, [y1, y2, y3, y4 ] are the state variables corresponding to 

[q1 , q̇1, q2, q̇2 ], respectively. The considered control method 

proposes a suitable manipulated variable (U) to move the two 
links from the initial conditions to the desired positions. The rela-
tionship between U and torque τ is given as follows: 

𝜏 = 𝑐1 𝑠𝑎𝑡(𝑦2) + 𝑏1𝑦2 + ℎ1 − (
𝑚12

𝑚22
(𝑐2 𝑠𝑎𝑡(𝑦4) +

𝑏2𝑦4 + ℎ2)) + (𝑚11 −
𝑚12

2

𝑚22
)𝑈  

(17) 

3. THE CONSIDERED FUZZY SYSTEM  
AND PROPOSED FUZZY CONTROLLER 

Three types of fuzzy systems are commonly implemented in 
the literature: (i) pure fuzzy systems, (ii) Takagi-Sugeno-Kang 
(TSK) fuzzy systems, and (iii) fuzzy systems with fuzzifier and 
defuzzifier. The main problem with the pure fuzzy system is that 
its inputs and outputs are fuzzy sets, whereas in engineering sys-
tems, the inputs and outputs are real-valued variables. To solve 
this problem, Takagi, Sugeno and Kang (Takagi and Sugeno, 
1985; Sugeno and Kang, 1988) proposed another fuzzy system 
whose inputs and outputs are real-valued variables. The main 
problems with the Takagi-Sugeno-Kang fuzzy system are: (i) its 
THEN part is a mathematical formula, and therefore, may not 
provide a natural framework to represent human knowledge, and 
(ii) there is not much freedom left to apply different principles in 
fuzzy logic. To elucidate these drawbacks, the third type of fuzzy 
systems has been proposed with fuzzifier and defuzzifier (Wang, 
1996). 

In general, a third type fuzzy system consists of four parts; the 
fuzzifier, the fuzzy rule base, the inference engine and the de-
fuzzifier (Wang, 1996). The used fuzzy system in this work imple-
ments the singleton fuzzifier, the product inference engine and the 
centre average defuzzifier as the following form: 

𝛹𝑖 =
∑ 𝜓𝑙

̅̅̅̅  ( ∏ 𝜇
𝐴𝑖

𝑙(𝑥𝑖) ) 
𝑛
𝑖=1

𝑚
𝑙=1

∑  𝑚
𝑙=1 ∏ 𝜇

𝐴𝑖
𝑙(𝑥𝑖)

𝑛
𝑖=1

                                                      (18) 

where, μ
Ai

l(xi) is the membership function of the input linguistic 

variable xi for the rule L-th. Because the calculations with triangu-
lar memberships are easy, this kind of functions are used here. 

The variable xi is the normalized form of the state varia-

ble yi.  ψl
̅̅ ̅ presents the center of the output membership function 

μ
Bi

l  for the rule L-th. 

The fuzzy rules are separately regulated for each input item 
as follow: 

𝑟𝑢𝑙𝑒 − 𝑙      {𝑅𝑖
𝑙 ∶ 𝐼𝐹   𝑥𝑖 = 𝜇

𝐴𝑖
𝑙      𝑇𝐻𝐸𝑁   𝛹𝑖 = 𝜇

𝐵𝑖
𝑙  }𝑙=1

𝑚   (19) 

that, Ri
l  is the rule L-th. The normalized variable xi is considered 

as an input item corresponding to the output variable Ψi. 
In this paper, the following equation is proposed to calculate 

the manipulated variable U as the summation of the multiplication 
of the deviation and priority variables. 

𝑈 = ∑ 𝐷𝑖 × 𝑃𝑖
𝑛
𝑖=1                                                                     (20) 

where, n is the number of the system states. Di denotes the i-th 

deviation variable and Pi represents the priority variable. 

Deviation fuzzy variable shows the deviation of state i-th 

from the corresponding desired state. In order to calculate Di, as 
the first fuzzy variable, based on the fuzzy system introduced in 
Equation (18), Table 1 and Fig. 2 are regarded. Table 1 mentions 
the fuzzy rule base for the input items corresponding to the devia-
tion fuzzy variables. The related triangular membership functions 
have been determined in Fig. 2 as negative (N), zero (Z) and posi-
tive (P). Based on Table 1 and Fig. 2, if the joint variables are 
located near the desired values, the control torque will be zero. 
Moreover, if the joint variables are less than the desired values, 
then a negative torque will rotate the arm counter clockwise. In-
versely, if the angles are more than the desired values, a positive 
torque will rotate the arm clockwise. 

 

Fig. 2. Triangular membership functions for the input items corresponding  
  to the deviation fuzzy variable Di  

Tab. 1. Fuzzy rule base corresponding to the deviation fuzzy variable 𝐷𝑖  

𝐷̅𝑙 𝑥𝑖 

-1 N 

0 Z 

1 P 

 

Fig. 3. Triangular membership functions for the input items corresponding  
  to the second fuzzy variable Si 

Tab. 2. Fuzzy rule base corresponding to the second fuzzy variable 𝑆𝑖. 

|𝑥1| 𝑆𝑙̅ 

S 0 

M 0.5 

B 1 

 

Priority variable represents the control priority of the consid-

ered joint. The priority variable Pi is proposed based on this fact 
that each state variable has its own effect on the control perfor-
mance which may be different from others. For example, the sta-
bilizing of the first joint angle and its angular velocity should be 
more important than those of the second joint when the first joint 
is not balanced. So, the first joint angular control takes more pri-
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ority than the second joint. To express the role of each input item 

separately, the control priority Pi is defined as follows. 

𝑃𝑖 = 𝑣1
𝑖 + 𝑣2

𝑖 × 𝑆𝑖  ;  𝑖 = 1, 2, 3, 4.                                         (21)                                                                                                                   

where, v1
i  and  v2

i  are the constant parameters. Si, as the second 
fuzzy variable, is calculated based on the fuzzy system defined in 
Equation (18), Table 2 and Fig. 3. Table 2 shows the fuzzy rule 
base for the absolute of the normalized joint angles and the joint 
angular velocities. Based on Fig. 3 and Table 2, for example when 
the first angle is small, the control priority of this joint is zero but 
when this angle is big, it takes the maximum value. 

Because the changes range of the inputs for the membership 
functions are [−1;+1] or [0; +1], the four state variables, i.e. 

the joint angles q1 and q2 and the joint angular velocities q1̇ and 

q2̇, have been normalized ( [x1, x2, x3, x4]) with the scaling 
factors. 

4. TEACHING-LEARNING-BASED OPTIMIZATION 

For searching the optimum parameters of the fuzzy controller, 
the TLBO algorithm has been implemented. Teaching-learning-
based optimization as a new nature-inspired optimization algo-
rithm works based on the influence of a teacher on learners. It is 
also a population-based method and uses a population of solu-

tions to find the global optimum solution. The wide application 
of TLBO in engineering fields is reflected in the improvement of 
the performance of distinguished systems, such as fatty acid me-
thyl esters (Baghban et al., 2018), scheduling of projects (Kumar 
et al., 2018), plasma arc cutting (Patel et al., 2018) and power 
consumption optimization (Rao, 2019). The population is consid-
ered as a group of learners or a class of learners. The optimiza-
tion process in TLBO is divided into two parts: the first part con-
sists of the ‘teacher phase’ and the second part consists of the 
‘learner phase’. The first one means learning from the teacher and 
the second means learning from the interaction between learners 
(Rao et al., 2011 and 2012). 

4.1. Teacher phase 

In this phase, the teacher conveys information among 
the learners for the improvement of their mean result in the class. 
It is assumed that m and n are the number of subjects and stu-

dents, respectively. Furthermore, Υm
ji

 denotes the mean result of 

the learners at subject j = 1, 2, … ,m and teaching-learning se-

quence i. The supreme leaner of the entire population is assigned 
as the teacher because he/she is the most knowledgeable person 
(Υbest).  

 
Fig. 4. Block diagram of the proposed optimal fuzzy controller of the under-actuated manipulator based on TLBO 

A random weighted differential vector is formed in subject j for 
student k at sequence i as follows. 

Υ𝐷𝑖𝑓
𝑗𝑘𝑖

= 𝑟𝑎𝑛𝑑(Υ𝑏𝑒𝑠𝑡
𝑗𝑘𝑖

− 𝛼Υ𝑚
𝑗𝑖
)                                                  (22) 

where, rand is a random number in range [0,1]. Moreover, α is 
the teaching factor and random takes the values of 1 or 2. A new 
learner is determined using the following equation. 

Υ𝑛𝑒𝑤
𝑗𝑘𝑖

= Υ𝑜𝑙𝑑
𝑗𝑘𝑖

− Υ𝐷𝑖𝑓
𝑗𝑘𝑖

                                                                (23) 

where, Υnew
jki

 represents the corresponding result of the improved  

learner and Υold
jki

 shows the grade achieved by each student in 

that class. 

4.2. Learner phase 

In this phase, the students might modify their knowledge via 
the mutual interaction. At first, two different student are selected, 

i.e. Υ1
j
 and Υ2

j
. Then, based on the following conditions, the new 

situations would be obtained. 

IF Υ1
𝑗
< Υ2

𝑗
 then Υ1𝑛𝑒𝑤

𝑗
= Υ1

𝑗
+ 𝑟𝑎𝑛𝑑(Υ2

𝑗
− Υ1

𝑗
)                  (24) 

IF Υ2
𝑗
< Υ1

𝑗
 then Υ1𝑛𝑒𝑤

𝑗
= Υ1

𝑗
+ 𝑟𝑎𝑛𝑑(Υ1

𝑗
− Υ2

𝑗
)                  (25) 

Moreover, Υ1new

j
 would be accepted in the condition that it 

has a more effective function value. 

5. OPTIMAL FUZZY CONTROL OF THE UNDER-ACTUATED 
MANIPULATOR 

Fig. 4 provides a graphical representation of the proposed 
strategy as a block diagram. This figure illustrates that the state 
variables (the joint angles and the joint angular velocities) relevant 
to the manipulator are compared with their desired values. Then, 
those are inputted into the normalizer block for normalization by 
the associated scaling factors. The fuzzy systems are utilizes to 
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produce deviation and priority variables. The summation of the 
production of these variables related to the joint angles and the 
joint angular velocities create the control effort. Finally, the TLBO 
algorithm described in the previous section is implemented for 
optimization of the constant parameters of the priority variables. 

The eight control parameters, i.e. 𝑣1
1 , 𝑣2

1, 𝑣1
2 , 𝑣2

2, 𝑣1
3 , 𝑣2

3, 𝑣1
4, 𝑣2

4 
have been regarded as the design variables and the summation 
of the integral of the absolute errors of the first and second joint 

angles has been considered as the cost function F as follows: 

𝐹 = ∫|𝑞1 − 𝑞1
𝑑| 𝑑𝑡 + ∫|𝑞2 − 𝑞2

𝑑|𝑑𝑡                                     (26) 

where, q1
d and q2

d respectively denote the desired values for the 
first and second joint angles.  

6. RESULTS AND DISCUSSIONS  

The manipulator parameters considered in this paper are as 
follows (Mahindrakar et al., 2006): 
z1 = 0.725, 𝑧2 = 0.3179 , 𝑧3 = 0.3147 , 𝑐1 = 0.26 ,  
𝑐2 = 0.116 , 𝑏1 = 0.6236 , 𝑏2 = 0.1223.  

Here, two cases with different initial values are considered; 
that for both, the desired values for the first and second joints are 
regarded as zero. 

With considering an initial population 50 and maximum itera-
tions 100, it is tried to optimize the cost function (26) and find the 
best parameters of the controller so that the system moves to the 
desired positions at a minimum possible time. Two different initial 
values: 

([𝑞1(0), 𝑞̇1(0), 𝑞2(0), 𝑞̇2(0) ] =

[
𝜋

5
 , 0 ,

𝜋

4
 ,0 ]  𝑎𝑛𝑑 [

𝜋

2
 ,0 ,0 ,0 ]) 

have been regarded, and their associate optimum values are 
listed Tables 4 and 5, respectively. The optimization graph of the 
first initial conditions illustrated in Fig. 5 shows that the population 
size and maximum iterations are well organized because the best 
cost has fixed after 42 iterations. The value of the best cost func-
tion in the first repetition equals 2.217 and in the last repetition, 
equals 2.061. The numerical values of the scaling factors obtained 

by a try and error process are as  [25 ° , 50 °/s, 25  ° , 50  °/s] 
for  [y1, y2, y3, y4] = [q1, q1̇, q2, q2̇], respectively. 

It is obvious from Tables 4 and 5 that the summation of the 
two parameters for the first joint angle and the first joint angular 
velocity is larger than of those for the second joint. It is resulted 
that the first joint control takes more priority than the second joint 
control. The time responses of the first and second joint angles, 
joint angular velocities and control torque for the two initial values 
are depicted in Figs. 6–11. It is observable from these figures that 
all the state variables have converged to zero, and the complete 
stabilization have occurred. 

Tab. 4. The optimum control parameters obtained by TLBO for the initial  

             values [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π

5
, 0,

π

4
, 0] 

𝒗𝟐 
𝒊  𝒗𝟏 

𝒊  Input item 

4.1000 0.2500 𝑖 = 1 

3.0000 1.4000 𝑖 = 2 

1.5044 0.5000 𝑖 = 3 

0.9600 1.4000 𝑖 = 4 

Tab. 5.  The optimum control parameters obtained by TLBO for the initial          

               values [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π

2
, 0,0,0] 

Input item 𝒗𝟐 
𝒊  𝒗𝟏 

𝒊  

𝑖 = 1 0.10050 3.1002 

𝑖 = 2 1.72820 1.9097 

𝑖 = 3 0.19978 0.1299 

𝑖 = 4 1.59450 0.9895 

 

Fig. 5. The optimization trajectory for the fuzzy control  
  of the under-actuated manipulator 

 
Fig. 6. Time trajectories of the first and second joint angles for initial  

  values [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π
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Fig. 7.  Time trajectories of the first and second joint angular velocities  

   for initial values [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π
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Fig. 8.  Time trajectory of the actuator torque for initial  

   values [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π

5
, 0,

π

4
, 0] 

 
Fig. 9.  Time trajectories of the first and second joint angles for initial  

   values [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π

2
, 0,0,0] 

 
Fig. 10. Time trajectories of the first and second joint angular velocities  

   for initial values [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π

2
, 0,0,0] 

 
Fig. 11. Time trajectory of the actuator torque for initial values 

    [q1(0), q̇1(0), q2(0), q̇2(0) ] = [
π

2
, 0,0,0] 

7. CONCLUSION 

In the present research, an optimal controller based on fuzzy 
rules was proposed as a general scheme to control a class of 
nonlinear underactuated systems. Teaching-Learning-Based Op-
timization (TLBO) was utilized to ascertain the optimal parameters 
of the proposed controller with regard to the design criteria. By 
utilizing the optimal design variables in the proposed controller, 
the performance of the controller was evaluated considering 
a two-link manipulator system. The results and analysis demon-
strate the proper performance of the proposed controller in the 
aspects of stability and minimum tracking error. As a potential 
future study, making the controller online through using approach-
es, such as neural networks and moving least squares interpola-
tion; ascertaining better optimal solutions for the parameters of the 
controller via other smart optimization algorithms; and considering 
different objective functions due to different design criteria can be 
regarded to extend this study in order to establish general  
approaches in the case of designing optimal fuzzy controllers.  
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