Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a magnified holographic projection based on spatial light modulators is proposed and implemented by combining four magnification methods, including similarity principle of Fourier transform, spatial division, digital lens, and image splicing methods. The Fourier holographic display system is constructed for the experimental verification of the proposed methods. With such four methods of holographic magnification, the reconstruction image can be magnified to 10 × 5 times in two-dimensional directions, which is verified by the experiments. Furthermore, the undesirable light of holographic projection is eliminated by encoding the linear phase onto the computer-generated holograms. The experimental results prove that the proposed system can realize magnified holographic projection with good reconstructed quality, which provides a promising potential for the dynamic holographic projector.
Czasopismo
Rocznik
Tom
Strony
589--600
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
autor
- College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
autor
- College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
autor
- College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
autor
- College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
autor
- College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
Bibliografia
- [1] BLANCHE P.-A., BABLUMIAN A., VOORAKARANAM R., CHRISTENSON C., LIN W., GU T., FLORES D., WANG P., HSIEH W.-Y., KATHAPERUMAL M., RACHWAL B., SIDDIQUI O., THOMAS J., NORWOOD R.A., YAMAMOTO M., PEYGHAMBARIAN N., Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature 468(7320), 2010, pp. 80–83.
- [2] YOSHIKAWA H., YAMAGUCHI T., Computer-generated holograms for 3D display, Chinese Optics Letters 7(12), 2009, pp. 1079–1082.
- [3] YARAS F., KANG H., ONURAL L., State of the art in holographic displays: a survey, Journal of Display Technology 6(10), 2010, pp. 443–454.
- [4] WAKUNAMI K., HSIEH P.-Y., OI R., SENOH T., SASAKI H., ICHIHASHI Y., OKUI M., HUANG Y.-P., YAMAMOTO K., Projection-type see-through holographic three-dimensional display, Nature Communications 7, 2016, article ID 12954.
- [5] ZHENXIANG ZENG, HUADONG ZHENG, XIAOQIAN LU, HONGYUE GAO, YINGJIE YU, Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen, Optical Review 22(5), 2015, pp. 853–861.
- [6] EUNKYONG MOON, MYEONGJAE KIM, JINYOUNG ROH, HWI KIM, JOONKU HAHN, Holographic head-mounted display with RGB light emitting diode light source, Optics Express 22(6), 2014, pp. 6526–6534.
- [7] ZHIDONG CHEN, XINZHU SANG, QIAOJUN LIN, JIN LI, XUNBO YU, XIN GAO, BINBIN YAN, KUIRU WANG, CHONGXIU YU, SONGLIN XIE, A see-through holographic head-mounted display with the large viewing angle, Optics Communications 384, 2017, pp. 125–129.
- [8] GANG LI, DUKHO LEE, YOUNGMO JEONG, JAEBUM CHO, BYOUNGHO LEE, Holographic display for see-through augmented reality using mirror-lens holographic optical element, Optics Letters 41(11), 2016, pp. 2486–2489.
- [9] YANFENG SU, ZHIJIAN CAI, QUAN LIU, PEILIANG GUO, YIFAN LU, LINGYAN SHI, Synthetic holographic display for three-dimensional optical see-through augmented reality using a zero-order nulled grating, Optik 149, 2017, pp. 239–245.
- [10] JIA JIA, YONGTIAN WANG, JUAN LIU, XIN LI, JINGHUI XIE, Magnification of three-dimensional optical image without distortion in dynamic holographic projection, Optical Engineering 50(11), 2011, article ID 115801.
- [11] FENG-JIAO GAN, DI WANG, CUI WANG, JUN WANG, QIONG-HUA WANG, A method of holographic magnification based on Fresnel diffraction, Journal of the Society for Information Display 24(6), 2016, pp. 355–359.
- [12] HUNG-CHUN LIN, YI-HSIN LIN, An electrically tunable focusing pico-projector adopting a liquid crystal lens, Japanese Journal of Applied Physics 49(10R), 2010, article ID 102502.
- [13] YI-HSIN LIN, MING-SYUAN CHEN, A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses, Journal of Display Technology 8(7), 2012, pp. 401–404.
- [14] HUNG-CHUN LIN, NEIL COLLINGS, MING-SYUAN CHEN, YI-HSIN LIN, A holographic projection system with an electrically tuning and continuously adjustable optical zoom, Optics Express 20(25), 2012, pp. 27222–27229.
- [15] DI WANG, QIONGHUA WANG, CHUAN SHEN, XIN ZHOU, CHAO LIU, Color holographic zoom system based on a liquid lens, Chinese Optics Letters 13(7), 2015, article ID 072301.
- [16] DI WANG, CHAO LIU, CHUAN SHEN, XIN ZHOU, QIONG-HUA WANG, A holographic zoom system without undesirable light, Optik 127(19), 2016, pp. 7782–7787.
- [17] SHIMOBABA T., MAKOWSKI M., KAKUE T., OIKAWA M., OKADA N., ENDO Y., HIRAYAMA R., ITO T., Lensless zoomable holographic projection using scaled Fresnel diffraction, Optics Express 21(21), 2013, pp. 25285–25290.
- [18] FUKAYA N., MAENO K., NISHIKAWA O., MATSUMOTO K., SATO K., HONDA T., Expansion of the image size and viewing zone in holographic display using liquid crystal devices, Proceedings of SPIE 2406, 1995, pp. 283–289.
- [19] MAENO K., FUKAYA N., NISHIKAWA O., SATO K., HONDA T., Electro-holographic display using 15mega pixels LCD, Proceedings of SPIE 2652, 1996, pp. 15–23.
- [20] YAMAMOTO K., ICHIHASHI Y., SENOH T., OI R., KURITA T., 3D objects enlargement technique using an optical system and multiple SLMs for electronic holography, Optics Express 20(19), 2012, pp. 21137–21144.
- [21] SASAKI H., YAMAMOTO K., WAKUNAMI K., ICHIHASHI Y., OI R., SENOH T., Large size three-dimensional video by electronic holography using multiple spatial light modulators, Scientific Reports 4, 2014, p. 6177.
- [22] STANLEY M., BANNISTER R.W., CAMERON C.D., COOMBER S.D., CRESSWELL I.G., HUGHES J.R., HUI V., JACKSON P.O., MILHAM K.A., MILLER R.J., PAYNE D.A., QUARREL J., SCATTERGOOD D.C., SMITH A.P., SMITH M.A.G., TIPTON D.L., WATSON P.J., WEBBER P.J., SLINGER C.W., 100-megapixel computer -generated holographic images from Active Tiling: a dynamic and scalable electro-optic modulator system, Proceedings of SPIE 5005, 2003, pp. 247–258.
- [23] SLINGER C., CAMERON C., STANLEY M., Computer-generated holography as a generic display technology, Computer 38(8), 2005, pp. 46–53.
- [24] GERCHBERG R.W., SAXTON W.O., A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35(2), 1972, pp. 237–246.
- [25] SONG-JIE LI, QIONG-HUA WANG, CUI WANG, DI WANG, DE-HONG WANG, Color holographic magnification system based on spatial light modulators, Journal of the Society for Information Display 24(2), 2016, pp. 125–130.
- [26] IEMMI C., CAMPOS J., Anamorphic zoom system based on liquid crystal display, Journal of the European Optical Society – Rapid Publications 4, 2009, article ID 09029.
- [27] AGOUR M., KOLENOVIC E., FALLDORF C., VON KOPYLOW C., Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator, Journal of Optics A: Pure and Applied Optics 11(10), 2009, article ID 105405.
- [28] HAO ZHANG, JINGHUI XIE, JUAN LIU, YONGTIAN WANG, Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection, Applied Optics 48(30), 2009, pp. 5834–5841.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d514cc7e-2a76-42e3-bc86-d289e72b5a15