PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimum design of elastic moduli for the multiple load problems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with minimization of the weighted average of compliances of structures, made of an elastic material of spatially varying elasticity moduli, subjected to n load variants acting non-simultaneously. The trace of the Hooke tensor is assumed as the unit cost of the design. Three versions of the free material design are discussed: designing the moduli of arbitrary anisotropy (AMD), designing the moduli of an isotropic material (IMD), designing of Young’s modulus for a fixed Poisson ratio (YMD). The problem is in all cases reduced to the Linear Constrained Problem (LCP) of Bouchitté and Fragalà consisting of two mutually dual problems: stress based and strain based, the former one being characterized by the integrand of linear growth depending on the trial statically admissible stresses. The paper shows equivalence of the stress fields solving the (LCP) problem and those appearing in the optimal body subjected to subsequent load cases.
Rocznik
Strony
27--66
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Civil Engineering Armii Ludowej 16, 00-637 Warsaw, Poland
Bibliografia
  • 1. M.P. Bendsøe, J.M. Guedes, R.B. Haber, P. Pedersen, J.E. Taylor, An analytical model to predict optimal material properties in the context of optimal structural design, Journal of Applied Mechanics, Transactions of ASME, 61, 4, 930–937, 1994.
  • 2. M.P. Bendsøe, A.R. Diaz, R. Lipton, J.E. Taylor, Optimal design of material properties and material distribution for multiple loading conditions, International Journal for Numerical Methods in Engineering, 38, 1149–1170, 1995.
  • 3. A.G. Weldeyesus, M. Stolpe, Free material optimization for laminated plates and shells, Structural and Multidisciplinary Optimization, 53, 1335–1347, 2016.
  • 4. S. Czarnecki, T. Lewinski, A stress-based formulation of the free material design problem with the trace constraint and multiple load conditions, Structural and Multidisciplinary Optimization, 49, 707–731, 2014.
  • 5. R. Czubacki, T. Lewinski, Topology optimization of spatial continuum structures made of non-homogeneous material of cubic symmetry, Journal of Mechanics of Materials and Structures, 10, 519–535, 2015.
  • 6. S. Czarnecki, Isotropic material design, Computational Methods in Science and Technology, 21, 2, 49–64, 2015.
  • 7. S. Czarnecki, P. Wawruch, The emergence of auxetic material as a result of optimal isotropic design, Physica Status Solidi B: Basic Solid State Physics, 252, 7, 1620–1630, 2015.
  • 8. U. Ringertz, On finding the optimal distribution of material properties, Structural Optimization, 5, 265–267, 1993.
  • 9. J. Haslinger, M. Kocvara, G. Leugering, M. Stingl, Multidisciplinary free material optimization, SIAM Journal on Applied Mathematics, 70, 7, 2709–2728, 2010.
  • 10. K. Bołbotowski, T. Lewinski, Setting the free material design problem through the methods of optimal mass distribution, arXiv preprint: https://arxiv.org/abs/2004.11084, 2020.
  • 11. A. Cherkaev, Variational Methods for Structural Optimization, Springer, Berlin, Heidelberg, 2000.
  • 12. G. Allaire, Shape Optimization by the Homogenization Method, Springer, New York, 2002.
  • 13. A. Cherkaev, G. Dzierzanowski, Three-phase plane composites of minimal elastic stress energy: high-porosity structures, International Journal of Solids and Structures, 50, 25–26, 4145–4160, 2013.
  • 14. G. Bouchitté, I. Fragalà, Optimality conditions for mass design problems and applications to thin plates, Archive for Rational Mechanics and Analysis, 184, 257–284, 2007.
  • 15. G. Bouchitté, G. Buttazzo, Characterization of optimal shapes and masses through Monge–Kantorovich equation, Journal of the European Mathematical Society, 3, 139–168, 2001.
  • 16. S. Czarnecki, T. Lewinski, On material design by the optimal choice of Young’s modulus distribution, International Journal of Solids and Structures, 110–111, 315–331, 2017.
  • 17. S. Czarnecki, T. Lewinski, Pareto optimal design of non-homogeneous isotropic material properties for the multiple loading conditions, Physica Status Solidi B: Basic Solid State Physics, 254, 1600821, 1–14, 2017.
  • 18. R.T. Marler, J.S. Arora, The weighted sum method for multi-objective optimization: new insights, Structural and Multidisciplinary Optimization, 41, 853–862, 2010.
  • 19. E. Cherkaev, A. Cherkaev, Minimax optimization problem of structural design, Computers and Structures, 86, 1426–1435, 2008.
  • 20. R.Segev, Load capacity of bodies, International Journal of Nonlinear Mechanics, 42, 250–257, 2007.
  • 21. I. Goda, J.F. Ganghoffer, S. Czarnecki, P.Wawruch, T. Lewinski, Optimal internal architectures of femoral bone based on relaxation by homogenization and isotropic material design, Mechanics Research Communications, 76, 64–71, 2016.
  • 22. R. Czubacki, J.-F. Ganghoffer, T. Lewinski, Simultaneous design of optimal shape and local cubic material characteristics, Engineering Transactions, 65, 11–17, 2017.
  • 23. T. Lewinski, S. Czarnecki, R. Czubacki, T. Łukasiak, P. Wawruch, Constrained versions of the free material design methods and their applications in 3D printing, [in:] A. Schumacher, Th. Vietor, S. Fiebig, K.-U. Bletzinger, K. Maute [eds.], Advances in Structural and Multidisciplinary Optimization, pp. 1317–1332, Springer, Cham, Switzerland, 2018.
  • 24. J. F. Ganghoffer, I. Goda, A.A. Novotny, R. Rahouadj, J. Sokołowski, Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization, ZAMM (Journal of Applied Mathematics and Mechanics), 98, 696–717, 2018.
  • 25. S. Czarnecki,T. Łukasiak, Recovery of the isotropic and cubic auxetic microstructures appearing in the least compliant continuum two-dimensional bodies, Physica Status Solidi B: Basic Solid State Physics, 257, 10, 2070036, 2020.
  • 26. R. Bhatia, Matrix Analysis, Springer Science, Heidelberg, 1997.
  • 27. B.D. Annin, N.I. Ostrosablin, Anisotropy of elastic properties of materials, Journal of Applied Mechanics and Technical Physics, 49, 998–1014, 2008.
  • 28. M.M. Mehrabadi, S.C. Cowin, Eigentensors of linear anisotropic elastic materials, Quarterly Journal of Mechanics and Applied Mathematics, 43, 15–41, 1990.
  • 29. A. Blinowski, J. Ostrowska-Maciejewska, J. Rychlewski, Two-dimensional Hooke’s tensors-isotropic decomposition, effective symmetry criteria, Archives of Mechanics, 48, 325–345, 1996.
  • 30. M. Moakher, Fourth-order Cartesian tensors: old and new facts, notions and applications, Quarterly Journal of Mechanics and Applied Mathematics, 61, 181–203, 2008.
  • 31. J. Rychlewski, On Hooke’s law, Journal of Applied Mathematics and Mechanics, 48, 303–314, 1984.
  • 32. F. Demengel, P. Suquet, On locking materials, Acta Applicandae Mathematicae, 6, 185–211, 1986.
  • 33. W. Hemp, Optimum Structures, Clarendon Press, Oxford, 1973.
  • 34. T. Lewinski, T. Sokół, C. Graczykowski, Michell Structures, Springer, Cham, 2019.
  • 35. G. Strang, R.V. Kohn, Hencky–Prandtl nets and constrained Michell trusses, Computer Methods in Applied Mechanics and Engineeering, 36, 2, 207–222, 1983.
  • 36. S. Czarnecki, T. Lewinski The stiffest designs of elastic plates. Vector optimization for two loading conditions, Computer Methods in Applied Mechanics and Engineering, 200, 1708–1728, 2011.
  • 37. G. Dzierzanowski, T. Lewinski, Compliance minimization of thin plates made of material with predefined Kelvin moduli. Part I. Solving the local optimization problem, Archives of Mechanics, 64, 21–40, 2012.
  • 38. G. Dzierzanowski, T. Lewinski, Compliance minimization of thin plates made of material with predefined Kelvin moduli. Part II. The effective boundary value problem and exemplary solutions, Archives of Mechanics, 64, 111–135, 2012.
  • 39. S. Czarnecki, T. Lewinski, A stress-based formulation of the free material design problem with the trace constraint and single loading condition, Bulletin of the Polish Academy of Sciences: Technical Sciences, 60, 191–204, 2012.
  • 40. F. Golay, P. Seppecher, Locking materials and the topology of optimal shapes, European Journal of Mechanics A, Solids, 20, 631–644, 2001.
  • 41. F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkäuser, New York, 2015.
  • 42. W. Górny, P. Rybka, A. Sabra, Special cases of the planar least gradient problem, Nonlinear Analysis: Theory, Methods & Applications, 151, 66–95, 2017.
  • 43. T. Lewinski, Two versions of Wozniak’s continuum model of hexagonal-type grid plates, Journal of Theoretical and Applied Mechanics, 22, 389–405, 1984.
  • 44. T. Lewinski, Differential models of hexagonal-type grid plates, Journal of Theoretical and Applied Mechanics, 22, 407–421, 1984.
  • 45. T. Lewinski, Physical correctness of Cosserat-type models of honeycomb grid plates, Journal of Theoretical and Applied Mechanics, 23, 53–69, 1985.
  • 46. S. Czarnecki, T. Łukasiak, T. Lewinski, The isotropic and cubic material designs. Recovery of the underlying microstructures appearing in the least compliant continuum bodies, Materials, 10, 10, 1137, 2017.
  • 47. T. Łukasiak, Macroscopically isotropic and cubic-isotropic two-material periodic structures constructed by the inverse-homogenization method, [in:] A.Schumacher, Th. Vietor, S. Fiebig, K.-U. Bletzinger, K. Maute [eds.], Advances in Structural and Multidisciplinary Optimization, pp. 1333–1348, Springer, Cham, Switzerland, 2018.
  • 48. A.Casalotti, F. D’Annibale, G. Rosi, Multi-scale design of an architected composite structure with optimized graded properties, Composite Structures, 112608, available online 2020.
  • 49. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, C.M. Spadaccini, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 6190, 1373–1377, 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5115d7d-be1d-4c57-a57c-aef102e38fe0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.