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Optimum design of elastic moduli
for the multiple load problems
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The paper deals with minimization of the weighted average of compliances
of structures, made of an elastic material of spatially varying elasticity moduli, sub-
jected to n load variants acting non-simultaneously. The trace of the Hooke tensor
is assumed as the unit cost of the design. Three versions of the free material de-
sign are discussed: designing the moduli of arbitrary anisotropy (AMD), designing
the moduli of an isotropic material (IMD), designing of Young’s modulus for a fixed
Poisson ratio (YMD). The problem is in all cases reduced to the Linear Constrained
Problem (LCP) of Bouchitté and Fragalà consisting of two mutually dual problems:
stress based and strain based, the former one being characterized by the integrand of
linear growth depending on the trial statically admissible stresses. The paper shows
equivalence of the stress fields solving the (LCP) problem and those appearing in the
optimal body subjected to subsequent load cases.
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1. Introduction

1.1. Overview of the free material design problems for n load conditions

The optimal anisotropy emerging in the least compliant designs
of non-homogeneous d-dimensional structures subjected to a single load variant
turns out to be highly singular. Of the six eigenvalues of the optimal Hooke tensor
only one is nonzero, as noted in the paper by Bendsøe et al. [1], where the unit
cost had been chosen as the trace of the Hooke tensor. One of the method to
make the optimal Hooke tensor non-singular is to consider additional loads, to be
applied non-simultaneously, and assume the weighted average of compliances as
the merit function, see Bendsøe et al. [2] and Weldeyesus and Stolpe [3]. If
the loads are appropriately chosen such that the whole design domain is used to
carry the loads and if the number n of the loads is bigger or equalm = d(d+1)/2,
then there appears a chance to make the Hooke tensor nonsingular (i.e. positive
definite), cf. Czarnecki and Lewiński [4]. The second method is to impose new
constraints on the Hooke tensor, e.g. cubic symmetry. If a single load is applied,
the optimal Hooke tensor of cubic symmetry becomes singular, but the number
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of positive eigenvalues of the Hooke tensor in 3D is three and remaining three are
zero, cf. Czubacki and Lewiński [5]. The stronger condition is isotropy ; the
optimal isotropic designs corresponding to a single load variant are characterized
by two, in general non-zero, bulk and shear moduli, cf. Czarnecki [6] and
Czarnecki and Wawruch [7]. But still there subdomains can appear where
the bulk modulus is zero and other places where the shear modulus vanishes. In
the former case the Poisson ratio attains its lower bound equal −1 (if d = 2 or
d = 3) and in the latter case the Poisson ratio attains its upper bound: 1/2 for
d = 3 and 1 for d = 2.

The methods aimed at designing the elastic moduli pointwise, keeping the
cost condition expressed directly in terms of the components of the Hooke ten-
sor, are called the methods of Free Material Design (FMD), as proposed in the
original papers by Ringertz [8] and Bendsøe et al. [2]. Later, since 1990’s, the
same family of methods has been called Free Material Optimization (FMO), see
the comprehensive study by Haslinger et al. [9] and the bibliography therein.
A detailed history of the development of the FMD methods (concerning mainly
the case of a single load condition) has been recently published in Bołbotowski
and Lewiński [10]. The aim of the present paper is to discuss the FMD meth-
ods in their selected versions for constructing the designs for the arbitrary finite
number of the load conditions.

Let us stress that the present paper concerns the FMD approaches only, while
the majority of papers on the material distribution problems aim at constructing
an optimal layout of a single isotropic material (of given bulk and shear moduli)
within a given design domain, the volume to be occupied by the given mate-
rial being the cost (or the isoperimetric) condition. The genuine papers on this
topic, dated back to the late 1970’s, have dealt with the optimal distribution
of two isotropic materials of given moduli. The properties of the material to be
distributed are there treated as given, while only the necessary relaxation by the
homogenization process introduces the composite zones where the material prop-
erties become spatially graded, yet complying with the G-closure constraints.
The theoretical background of this approach has been given in the fundamental
papers by Luc Tartar on the scalar problem, then extended to the vectorial elas-
ticity setting by François Murat, Andrej Cherkaev, Konstantin Lur’e, Robert
Kohn, Graeme Milton, Robert Lipton, etc., see the monographs by Andrej
Cherkaev [11] and Gregoire Allaire [12]. More recent works originating
from these ideas concern the three-material design (e.g. two isotropic materials
and a void) and just this approach opens new perspectives in the optimum de-
sign, see Cherkaev and Dzierżanowski [13] and the literature cited therein.

In the FMD approach the unknown anisotropy (or its special classes) is not
designed with using given materials to be optimally placed but it is itself treated
as a compound design variable, subject only to the necessary symmetry con-
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ditions and to the condition of positive semi-definiteness of the Hooke tensor
field. Consequently, applying the FMD approaches we are not concerned for the
final results being related or not to the mechanics of composites’ setting within
which any material point should be given a representative volume element (RVE),
where the stress field (called also a micro-stress field) should be constructable
as statically admissible. Indeed, a weak point of the FMD methods is that this
connection with an underlying microstructure is broken. However, by this sim-
plification the FMD approaches make the design variables free of the underlying
local equilibrium constraints.

As noted above, the Hooke tensor field will be the design variable of the op-
timum design problem; it will only be subjected to the pointwise indispensable
symmetry conditions, and to the condition of positive semi-definiteness. The
latter condition means that in some sub-regions of the design domain all the
components of the Hooke tensor may vanish; just there voids emerge. Usually,
these empty (or non-material) domains appear close to the boundaries, far from
the places where the loads are applied. Thus, the assumption of positive semi-
definiteness means endowing this optimization method with the tool of cutting
off the unnecessary parts of the design domain; the method becomes the topol-
ogy optimization method, since no a priori assumptions on connectivity of the
final design are imposed: the voids appear where all the design variables vanish.
Moreover, the optimal design is determined by the minimal set of data: the de-
sign domain, the loads and their weights, and the boundary where the support
is possible. This idealized formulation reduces the problem of minimization of
the weighted average of compliances to the pair of two mutually dual problems,
the theory of which has been put forward in Bouchitté and Fragalà [14] and
named there the Linear Constrained Problem (LCP). However, the paper [14],
along with the former paper by Bouchitté and Buttazzo [15] did not deal
with the free material design, but with the optimal distribution of the measure
being the carrier of the structure, which, in particular, may be alternatively
interpreted as the problem of optimal distribution of Young’s modulus of an
isotropic body of a fixed Poisson ratio, see Czarnecki and Lewiński [16]. It
is surprising indeed that the free material design problems in various settings
reduce to such pairs of mutually dual problems. A rigorous passage from the
free material design to the LCP problem has been recently shown in [10] in the
context of a single load variant.

The present paper discusses the three versions of the FMD problem of de-
signing of an elastic non-homogeneous material locally being:

a) anisotropic, b) isotropic, c) isotropic with the predefined Poisson ratio

in a structure subjected to n load variants. The merit function is chosen as the
weighted compliance, while the unit cost is assumed as equal to the trace of the
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Hooke tensor. The weighted average of compliances is a convex combination of
the compliances corresponding to the subsequent (non-simultaneously applied)
load variants; the weights are denoted by η1, . . . , ηn, 0 ≤ ηα ≤ 1, η1+· · ·+ηn = 1.
On the unknown Hooke tensor we impose pointwise the well-known symmetry
conditions as well as the conditions of positive semi-definiteness, as mentioned
earlier.

In the context of n variants of loads the problem (a), named here the aniso-
tropic material design (AMD) has been for the first time formulated in [2]. In [4]
the problem AMD has been reduced to the one part of the LCP problem, yet
the dual (or strain-based) problem has not been specified with all necessary
details. The present paper puts forward both the problems constituting the linear
constrained problem (LCP) implied by AMD method.

In the context of n load variants the problem (b) has been for the first time
proposed in Czarnecki and Lewiński [17] and there named the isotropic ma-
terial design (IMD). In the same paper the problem (c) has been discussed in
which the Young modulus is the only design variable. Both the IMD and YMD
(or the Young modulus design) problems have been there reduced to one part
of the LCP problem in which the minimization process concerns the trial stress
fields. The present paper complements the hitherto published results by deliv-
ering the explicit formulations of both the mutually dual problems constituting
the LCP problem for the IMD and YMD methods. Moreover, the paper delivers
arguments confirming that the stress fields in the optimal structure induced by
the subsequent loads coincide with the relevant components of the minimizer of
the LCP problems.

The present paper sets forth the vectorial optimization as minimization of
the convex combination of compliances for the subsequent load variants, the
loads being viewed as acting non-simultaneously. As the general scheme of such
problems discussed in Marler and Arora [18] applies here, the complete so-
lution to this problem paves the way for constructing the Edgeworth–Pareto
front for the least compliant designs of elastic structures. This justifies the cho-
sen method of scalarization. Alternatively, one can consider minimization of the
principal compliance, as proposed in Cherkaev and Cherkaev [19]. This con-
cept introduces a priori a certain integral constraint on the possible loads. Hence,
the final design becomes insensitive to the selected load variants. This approach
has much in common with Segev’s [20] concept of the load capacity of struc-
tures. The capacity of a structure coincides with the Lagrange multiplier corre-
sponding to the integral constraint in Cherkaevs’ theory. Introduction of these
concepts into the free material design will be the subject of the forthcoming
papers.

The FMD methods deliver the tools of predicting the optimal distribution
of elastic moduli, necessary for the further treatment: constructing the un-
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derlying spatially varying microstructure of a given symmetry class and then
programing the 3D printing process. The recent papers by Goda et al. [21],
Czubacki et al. [22], Lewiński et al. [23], Ganghoffer et al. [24] and Czar-
necki and Łukasiak [25] deliver an ample variety of examples of making use of
the free material design tools in the process of designing materials of prescribed
effective properties.

The present paper is aimed at constructing:
(i) the strain-based components of the LCP problems for the IMD and YMD

settings. In the hitherto available literature only the stress-based components of
the LCP problems have been constructed and only basing on them the numerical
methods have been developed,

(ii) the strain-based component of the LCP problem for the AMD method.
The hitherto known formulation was only a general scheme; the present work
shows that the locking locus of the problem is the unit ball with respect to Schat-
ten’s ∞-norm for collection of virtual strains corresponding to the subsequent
load cases,

(iii) the auxeticity regime predicted by the IMD method,
(iv) the algorithm of computing the stress fields in the optimal body corre-

sponding to the subsequent load cases.
The present paper does not deal with the regularity issues concerning the

variational problems considered. In particular, the problems of existence of so-
lutions will not be dealt with, hence, for instance, we shall not use the operators
sup or inf, understanding that the operations max and min suffice to convey
the idea. The correct setting of the FMD problems requires subtle tools of the
modern variational calculus along with measure-theoretic methods, see the re-
cent paper by Bołbotowski and Lewiński [10] on the free material design for
the case of a single load condition.

1.2. Selected mathematical tools and adopted conventions

The aim of the present paper is reducing the AMD, IMD and YMD prob-
lems concerning the design for n load variants to the pairs of mutually dual
problems forming the LCP problem of Bouchitté and Fragalà [14], see problems
(9) and (11) therein. It turns out that in the LCP problems corresponding to the
AMD problem the specific norms of matrices appear, so called Schatten p-norms.
The main feature of these norms is their property of being unitarily invariant on
the space of square matrices, see Ch. IV.2 of the book by Bhatia [26]. Let us
recall the definition of Schatten’s norms. Let µi(B) denote the i-th eigenvalue of
a square matrix B. Let the t× l matrix A be of the rank: r = rank(A). Let us
define

(1.1) sk(A) =

√
µk(AAT ).
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These quantities are either positive (if 1 ≤ k ≤ r) or zero, if r < k ≤ min(t, l).
We introduce the ordering: s1 ≥ s2 ≥ · · · ≥ sr; the quantities sj are called
singular values of A. The Schatten p-norm of the matrix A is defined by

(1.2)
‖A‖p =

( r∑
j=1

(sj(A))p
)1/p

if 1 ≤ p <∞ and

‖A‖∞ = max
1≤j≤r

sj(A) = s1(A).

The Schatten 1-norm of a matrix A is (for future convenience) denoted by

(1.3) ρ(A) = ‖A‖1 =

min(t,l)∑
j=1

sj(A) or ρ(A) =

min(t,l)∑
j=1

√
µj(AAT ).

Throughout the paper a conventional notation is applied: the design domain
in Rd is denoted by Ω; in case of d = 3 the domain is parameterized by the
Cartesian system (x1, x2, x3) with the orthogonal basis ei, i = 1, 2, 3; ei ·ej = δij ,
where · is the scalar product in Rd. The Euclidean norm of p ∈ Rd is defined by
‖p‖ =

√
p · p.

The set of second rank symmetric tensors is denoted by E2
s . The identity

tensor in E2
s is I = δijei ⊗ ej ; repetition of indices implies summation. The

set of fourth rank tensors C = Cijklei ⊗ ej ⊗ ek ⊗ el satisfying the symmetry
conditions Cijkl = Cklij , Cijkl = Cjikl is denoted by E4

s . The identity tensor in
E4
s is represented by: II = 1

2(δikδjl + δilδjk)ei⊗ ej ⊗ ek ⊗ el. The scalar product
of σ, ε ∈ E2

s is defined by: σ · ε = σijεij . The Euclidean norm of σ ∈ E2
s is

defined by ‖σ‖ =
√
σ · σ. Any tensor from the set E2

s may be decomposed as
follows: σ = 1

d(trσ)I + devσ; where trσ = σijδij . Note that for σ, ε ∈ E2
s

(1.4) σ · ε =

(
1√
d

trσ

)(
1√
d

tr ε

)
+ devσ · dev ε,

which suggests introducing a new operator: Trσ = (trσ)/
√
d to simplify further

formulae. Let σI = µ1(σ) ≥ σII = µ2(σ) ≥ σIII = µ3(σ) be principal stresses.
Then

Trσ =


1√
2

(σI + σII ) if d = 2,
1√
3

(σI + σII + σIII ) if d = 3,
(1.5)

‖devσ‖ =


1√
2
|σI − σII | if d = 2,

1√
3

√
(σI − σII )2 + (σI − σIII )2 + (σII − σIII )2 if d = 3.

(1.6)
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A comma before an index implies partial differentiation, e.g.: ∂(·)/∂xi = (·),i,
i = 1, 2, 3. The symmetric part of the gradient of the vector field v is denoted by
εij(v) = (νi,j + νj,i)/2. By averaging over Ω we understand the operation 〈. . .〉
defined by 〈f〉 = (

∫
Ω f dx)/|Ω|; dx = dx1 dx2 dx3 if d = 3 and dx = dx1 dx2 if

d = 2. The components of σ ∈ E2
s may be viewed as a column vector:

σ ∼ [σ11, σ22, σ33,
√

2σ23,
√

2σ13,
√

2σ12]T in R6 if d = 3,(1.7)

σ ∼ [σ11, σ22,
√

2σ12]T in R3 if d = 2.(1.8)

These column vectors are still denoted by σ, which shall not lead to misunder-
standings. The vectorization technique above has been proposed by P. Bechterew
in 1920’s, see Annin and Ostrosablin [27], and has been rediscovered in
Mehrabadi and Cowin [28], Blinowski et al. [29], Moakher [30].

Let us recall that for any norm φ(·) in Rm one may introduce the dual norm
by

(1.9) φo(q) = max
p∈Rm,
p6=0

p · q
φ(p)

or

(1.10) φo(q) = max{p · q | φ(p) ≤ 1, p ∈ Rm}.

Similarly, for any norm φ(·) in E2
s one may introduce the dual norm by

(1.11) φo(ε) = max
σ∈E2

s
σ 6=0

σ · ε
φ(σ)

or

(1.12) φo(ε) = max{σ · ε | σ ∈ E2
s , φ(σ) ≤ 1}.

The functions q→φo(q), ε→φo(ε) are called functions being polar to q→φ(q),
ε→ φ(ε).

If φ(p) = ‖p‖, i.e. if φ(·) is the Euclidean norm, then φo(p) = φ(p) = ‖p‖.
The following estimates hold

(1.13) p · q ≤ φ(p)φo(q), σ · ε ≤ φ(σ)φo(ε)

and the equalities are attainable. Let us recall that the Schatten q-norm is dual
to the Schatten p-norm if 1/p+ 1/q = 1. In particular, see Bhatia [26]

(1.14) (‖A‖1)o = ‖A‖∞.

The following convention of expressing the minimization problems is adopted:
minx∈X f(x) = min{f(x) | over x ∈ X}, which is very convenient if the expres-
sion x ∈ X is complicated. The set X is not strictly defined, since the regularity
conditions are not specified.
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1.3. A useful minimization result

In the optimum design problems to be analyzed the following minimization
problem appears:

(1.15) J = min

{∫
Ω

( n∑
i=1

ai(x)

ui(x)

)
dx

∣∣∣∣
over ui such that: ui ≥ 0,

∫
Ω

( n∑
i=1

ui(x)
)
dx ≤ Λ

}

where ai(x) > 0 are given functions in the domain Ω, Λ is a given positive
constant while the functions ui(x), i = 1, . . . , n are unknown. Let us define
E0 = Λ/|Ω|. The solution to the problem (1.15) reads

(1.16) ûi(x) = E0

√
ai(x)〈∑n

j=1
√
aj
〉 ,

which delivers the explicit formula for J

(1.17) J =
1

Λ

(∫
Ω

( n∑
j=1

√
aj

)
dx

)2

.

Since the result (1.16, 1.17) is crucial in the sequel, it is thought appropriate
to deliver its proof. Let us introduce the vector fields f = (f1, f2, . . . , fn), g =
(g1, g2, . . . , gn) in Ω, with the components:

(1.18) fi =

√
ai
ui
, gi =

√
ui.

Let us apply now the Cauchy–Schwarz inequality:

(1.19) (f | g) ≤
√

(f |f)
√

(g|g)

where the scalar product is defined by

(1.20) (f |g) =

∫
Ω

f · g dx.

Upon computing the scalar products

(1.21) (f |g) =

∫
Ω

( n∑
i=1

√
ai

)
dx, (f |f) =

∫
Ω

( n∑
i=1

ai
ui

)
dx, (g|g) =

∫
Ω

( n∑
i=1

ui

)
dx
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and inserting the above results into the inequality (1.19) one gets∫
Ω

( n∑
j=1

ai
ui

)
dx ≥ 1∫

Ω

(
∑n

j=1 uj) dx

(∫
Ω

( n∑
j=1

√
aj

)
dx

)2

(1.22)

≥ 1

Λ

(∫
Ω

( n∑
j=1

√
aj

)
dx

)2

.

The inequalities above become equalities for ui = ûi given by (1.16), which ends
the proof of the formulae (1.16) and (1.17).

2. Anisotropic Material Design (AMD)

The aim of the present section is rearranging the AMD method by reducing
it to the pair of mutually dual problems forming the relevant Linear Constrained
Problems (LCP), thus constituting the theory for both single and multiple load
cases. As stressed in the Introduction, the AMD method discussed imposes the
weakest possible constraints on the Hooke tensor components: known symmetry
conditions and positive semi-definiteness, thus constructing the AMD as a topol-
ogy optimization tool. The complete solution provides the Edgeworth–Pareto
front of the problem considered, see [18].

The stress-based formulation is recalled after Czarnecki and Lewiński [4];
the explicitly written strain-based formulation is the novelty of this part of the
present paper.

2.1. Elasticity problem for subsequent n load variants

Consider a structure made of a linearly elastic material, subjected, non-
simultaneously, to n ≥ 1 traction loads T(α) acted on the given part Γ1 of
the boundary Γ of the given spatial (d = 3), or planar (d = 2) design do-
main Ω. The body is fixed on the boundary Γ2, a part of Γ. The traction
load T(α), α = 1, . . . , n, deforms the body and induces the displacement field
u(α) = (u

(α)
1 , u

(α)
2 , u

(α)
3 ) (case of d = 3) or u(α) = (u

(α)
1 , u

(α)
2 ) (case of d = 2) and

the stress field τ(α) = (τ
(α)
ij ). The stress field τ(α) is linked with the load T(α)

by the variational equation of equilibrium

(2.1) ∀v ∈ V (Ω)

∫
Ω

τ(α) · ε(v)dx = f (α)(v)

where the virtual work of the traction load is represented by the linear form

(2.2) f (α)(v) =

∫
Γ1

T(α) · v ds
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and V (Ω) is the set of kinematically admissible displacement fields v=(v1, . . . , vd)
satisfying the condition: v = 0 on the boundary Γ2. The stress fields satisfying
(2.1) form the set of statically admissible stresses Σα(Ω). These statical problems
are the starting point for the anisotropic material design, see Fig. 1 illustrating
the case of d = 2, n = 2.

Fig. 1. A scheme of the anisotropic material design (AMD) problem for d = 2 and two load
variants (n = 2).

The elastic moduli Cijkl of the Hooke tensor C, C ∈ E4
s , are the design

variables. Let us recall its spectral decomposition

(2.3) C(x) =

m∑
K=1

λK(x)ωK(x)⊗ωK(x)

wherem = d(d+1)/2, λK are eigenvalues of the Hooke tensor C, whileωK ∈ E2
s

are so-called eigenstates satisfying the orthogonality conditions:ωK ·ωL = δKL,
K,L = 1, . . . ,m, see Rychlewski [31]. We assume that λK are non-negative,
i.e. the case of C = 0 in some subdomains of the design domain is admitted.
The trace of the Hooke tensor is defined by

(2.4) tr C = λ1 + · · ·+ λm.
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The stress field σ(α) = Cε(u(α)) associated with the displacement field u(α)

satisfies the variational equation of equilibrium (2.1). The quantity

(2.5) ℘(α) = f (α)(u(α))

represents the compliance of the structure corresponding to the load variant
no α. The compliance will be viewed as a functional of the Hooke tensor field:
℘(α) = ℘(α)(C).

2.2. Setting the AMD problem for n load variants

The aim of the approach is rational designing a structure to make it as stiff
as possible if subjected to the traction loads T(1) . . . ,T(n) acting non-simulta-
neously. Let the weight coefficient ηα ,0 ≤ ηα ≤ 1, reflect the significance of the
αth load and let η1 + · · ·+ηn = 1, 0 ≤ ηα ≤ 1. One of the method of scalarization
of the vectorial optimization problems is choosing a single merit function as the
convex combination of the objective functions, here – compliances. The problem
is reduced to minimization of the functional

(2.6) Fη(C) =
n∑

α=1

ηα℘
(α)(C)

over the Hooke tensor fields C satisfying the cost condition in the form:

(2.7)
∫
Ω

tr C dx ≤ Λ

where Λ = E0|Ω|, E0 being a referential elasticity modulus. The isoperimetric
condition (2.7) may be expressed as 〈tr C〉 ≤ E0. We admit a degeneration of
the Hooke tensor fields: not only some of their eigenvalues may vanish, but it is
allowed that all of them vanish in some subdomain of the design domain. Thus,
the set of admissible Hooke tensor fields in Ω consists of the tensors satisfying
pointwise the symmetry conditions expressed as C(x) ∈ E4

s (see Section 1.2),
the eigenvalues of C being nonnegative, or λK(x) ≥ 0, K = 1, . . . ,m. Such
tensors form a set H(Ω). The tensor fields from this set satisfying (2.7) form the
set HΛ(Ω).

Nowwe are ready to formulate the anisotropicmaterial design problem (AMD):

(2.8) JΛ,η = min{Fη(C) | over C such that: C ∈ HΛ(Ω)}

If Ĉη is the solution to this problem, the compliances ℘(α)(Ĉη) characterize the
optimum structure. The mapping

(2.9) η = (η1, . . . , ηn)→ [℘(1)(Ĉη), . . . , ℘
(n)(Ĉη)]
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forms a hypersurface in Rn. If n = 2, taking η1 = η, η2 = 1−η we obtain a plane
curve

η → [℘(1)(Ĉη), ℘
(2)(Ĉη)].

The hypersurface (2.9) is the boundary of the set of points [℘(1)(C), . . . , ℘(n)(C)]
corresponding to the all tensors C satisfying (2.7). This boundary is the Edge-
worth–Pareto front of the problem (2.8), as noted in [4, 17]. Thus, by solving
the problem (2.8) for subsequent weights (η1, . . . , ηn) we build the Edgeworth–
Pareto front, which delivers the complete information on the best designs for the
given load variants. The designs lying on the Edgeworth–Pareto front cannot be
corrected without increasing at least one of the compliances, see Fig. 1 explaining
the construction of the Edgeworth–Pareto front in case of n = 2.

2.3. The stress-based reformulation of the AMD problem

The terms in the decomposition (2.3) of tensor C are mutually orthogonal;
hence the density of the complementary energy W (α) of the body subjected to
the load variant α can be written as below

W (α) =
1

2
τ(α) ·

(∑
K∈I

1

λK
ωK ⊗ωK

)
τ(α)(2.10)

=
1

2

∑
K∈I

1

λK
(ωK · τ(α))2

where I is the collection of indices such that λK > 0. The α-th compliance is
expressed by

(2.11) ℘(α) = min

{∑
K∈I

∫
Ω

1

λK
(ωK · τ)2 dx | over τ such that: τ ∈ Σα(Ω)

}
.

Let

(2.12) Gη(λ1, . . . , λm;ω1, . . . ,ωm;τ(1), . . . ,τ(n))

=
∑

α=1,...,n

ηα
∑
K∈I

1

λK
(ωK · τ(α))2 dx.

The problem (2.8) may be written as below

(2.13) JΛ,η = min
τ(α)∈Σα(Ω)

min
λK≥0∫

Ω(λ1+···+λm) dx≤Λ

min
ωK∈E2

s
ωK ·ωL=δKL∫

Ω

Gη(λ1, . . . , λm;ω1, . . . ,ωm;τ(1), . . . ,τ(n)) dx.

The minimization operations over λK and over ωK can be performed analyt-
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ically, cf. [4]. This process requires Bechterew’s vectorization formalism of re-
placing the tensors by the column vectors (see (1.7)) and forming a stress ma-
trix from the column vectors of stresses corresponding to the subsequent load
variants. Namely, in the 3D case, if σ(1),σ(2), . . . ,σ(n) are the states of stress
corresponding to the subsequent loads, we form a 6 by n matrix

(2.14) [σ(1)σ(2) . . .σ(n)] =



σ
(1)
11 σ

(2)
11 . . . σ

(n)
11

σ
(1)
22 σ

(2)
22 . . . σ

(n)
22

σ
(1)
33 σ

(2)
33 . . . σ

(n)
33

√
2σ

(1)
23

√
2σ

(2)
23 . . .

√
2σ

(n)
23

√
2σ

(1)
13

√
2σ

(2)
13 . . .

√
2σ

(n)
13

√
2σ

(1)
12

√
2σ

(2)
12 . . .

√
2σ

(n)
12


.

In case of the 2D setting the matrix above has dimensions 3 by n and is con-
structed by using (1.8). By ρ([σ(1) σ(2) . . .σ(n)]) we understand the Schatten
1-norm (1.3) of the matrix (2.14).

By performing in (2.13) minimization over λK , ωK one finds, see [4]

(2.15) JΛ,η =
1

Λ
(Ẑη)

2

where Ẑη is expressed by the linear constrained problem (LCP): find statically
admissible stress fields (τ̂(1), . . . , τ̂(n)) minimizing the functional below

(2.16) Ẑη = min
τ(α)∈Σα(Ω)
α=1,...,n

∫
Ω

ρ([
√
η1τ

(1) . . .
√
ηnτ

(n)]) dx (PAMD).

The optimum design problem (2.8, 2.13) has been thus reduced to solving the
problem (2.16) which is a purely static problem of finding optimal stress fields,
the problem being unaffected by elastic moduli. The optimal moduli λ̂K (or the
eigenvalues of Ĉ) are expressed by the minimizer (τ̂(1), . . . , τ̂(n)) of the prob-
lem (2.16):

(2.17) λ̂K(x) = E0
sK([
√
η1τ̂

(1)(x) . . .
√
ηnτ̂

(n)(x)])

〈ρ([
√
η1τ̂

(1) . . .
√
ηnτ̂

(n)])〉

where K = 1, . . . ,m; some of the moduli may vanish.
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The optimal eigenstates ω̂K are eigenvectors of the eigenvalue problem: find
(µ,y), µ ∈ R, y ∈ Rm such that

(2.18) (ŜηŜ
T
η )y = µy

where

(2.19) Ŝη = [
√
η1τ̂

(1) . . .
√
ηnτ̂

(n)].

In case of 3D the vector y ∈ R6 determines the components of the tensor ω̂
according to (1.7), or ω̂11 = y1, ω̂22 = y2, ω̂33 = y3, ω̂23 = y4/

√
2, ω̂13 = y5/

√
2,

ω̂12 = y6/
√

2.
The fields λ̂K , ω̂K determine the optimal Hooke tensor

(2.20) Ĉ(x) =
m∑
K=1

λ̂K(x)ω̂K(x)⊗ ω̂K(x).

If 1 ≤ n < m tensor Ĉ is singular, independently of the form of the loads. If
n ≥ m there exist loads such that all eigenvalues λ̂K , K = 1, . . . ,m, are positive
at each point of the design domain.

2.4. The strain-based reformulation of the AMD problem

The general theory put forward in [14] teaches us that the minimization prob-
lem (2.16) should be analyzed jointly with its dual formulation, thus forming the
LCP-type problem. The dual version of the problem (2.16) requires construction
of the function polar to the function ρ([σ(1)σ(2) . . .σ(n)]), or

(2.21) ρo([ε(1) . . . ε(n)]) = max{(τ(1) · ε(1) + · · ·+ τ(n) · ε(n)) |
over τ(α) ∈ E2

s , α = 1, . . . , n; ρ([τ(1) . . .τ(n)]) ≤ 1}.

Themaximization operation can be performed analytically, resulting in, see (1.14)

(2.22) ρo([ε(1)ε(2) . . . ε(n)])

= max
1≤j≤min(m,n)

{sj [ε(1)ε(2) . . . ε(n)]} = ‖[ε(1)ε(2) . . . ε(n)]‖∞.

Thus, the problem dual to (2.16) assumes the form of the LCP-type problem:
find the maximizer (v̂(1), v̂(2), . . . , v̂(n)) of:

(2.23) Ẑη = max
{ n∑
α=1

√
ηαf

(α)(v(α))
∣∣∣ over v(1), . . . ,v(n) ∈ V (Ω) such that

‖[ε(v(1)(x))ε(v(2)(x)) . . . ε(v(n)(x))]‖∞ ≤ 1 for a.e. x ∈ Ω
}

(P ∗AMD).
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The problems (2.16), (2.23) should be viewed as one problem and solved simul-
taneously.

Remark 2.1. Let us note that the problem (2.23) introduces the locking con-
ditions on virtual strains, like in the theory of materials with locking, see [32].
These locking conditions impose pointwise constraints on the whole collection
of virtual strains with using the Schatten ∞-norm. On the other hand, similar
locking conditions on the virtual strain (for a single load variant) was discovered
already by Michell in 1904 in the context of minimization of weight of the fully
stressed frameworks. Just the locking conditions on the virtual strain are the
typical starting point for constructing the optimal Michell structures in plane,
see [33] and [34]. The first mathematical and very clear explanation of appear-
ance of the locking phenomenon has been delivered by Strang and Kohn [35].
Nowadays, more general treatment of Bouchitté and Fragalà [14] confirms
that such conditions appear inevitably within certain classes of optimum design
problems.

2.5. Specification for the case of n = 2 load variants

2.5.1. Discussion of the problem (PAMD). In the case of two load variants (n = 2)
some steps of the procedure leading to (2.16) can be done by geometrical methods
treating stress tensors as vectors in R3.This delivers a deeper understanding of
the result (2.16). First we shall specify the problem (2.16) for n = 2, given
η1 = η, η2 = 1 − η, 0 ≤ η ≤ 1; Ω is a plane or a spatial domain. Let us start
with computing the Schatten 1-norm of the matrix A = [σ τ], σ,τ ∈ E2

s . We
make use of the vectorial representation of tensors from E2

s , cf. (1.7, 1.8), hence

(2.24) AT =

[
σ11 σ22 σ33

√
2σ23

√
2σ13

√
2σ12

τ11 τ22 τ33

√
2τ23

√
2τ13

√
2τ12

]
, AT =

[
σ11 σ22

√
2σ12

τ11 τ22

√
2τ12

]
for d = 3 and d = 2, respectively. We shall find an explicit representation of the
Schatten 1-norm of this matrix. The matrix ATA reads

ATA =

[
σ · σ σ · τ
τ · σ τ · τ

]
.

The eigenvalues µα = µα(ATA) of this matrix are the roots of the equation

(2.25) µ2 − (‖σ‖2 + ‖τ‖2)µ+ [‖σ‖2‖τ‖2 − (σ · τ)2] = 0.

The singular values are given by: s1(A) =
√
µ

1
, s2(A) =

√
µ2, where

(2.26) µ1,2 =
1

2
(‖σ‖2 + ‖τ‖2)± 1

2

√
(‖σ‖2 − ‖τ‖2)2 + 4(σ · τ)2.
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The Schatten 1-norm of A equals ρ(A) = s1(A) + s2(A), or

(2.27) ρ([σ τ]) =
√
µ1 +

√
µ2.

One can write ρ([σ τ]) = U(σ,τ) and the function U(σ,τ) may be reduced to
the form

(2.28) U(σ,τ) =

√
‖σ‖2 + ‖τ‖2 + 2

√
‖σ‖2‖τ‖2 − (σ · τ)2.

In case of d = 2 one may write:

U(σ,τ) =
√
‖σ‖2 + 2‖σ× τ‖+ ‖τ‖2

or
U(σ,τ) = max{‖σ+ R−π/2τ‖, ‖σ+ Rπ/2τ‖},

where R±π/2 represents the matrix of rotation by ±π/2 in the plane determined
by the vectors σ, τ.

Thus, for n=2, the problem (2.16) can be put in the form: find τ̂(1) ∈ Σ1(Ω),
τ̂(2) ∈ Σ2(Ω) attaining minimum in:

(2.29) Ẑη = min

{∫
Ω

U(
√
η τ(1),

√
1− η τ(2)) dx

∣∣∣
over τ(1) ∈ Σ1(Ω),τ(2) ∈ Σ2(Ω)

}
.

Let us recall now the geometric approach by Czarnecki and Lewiński [36]
and Dzierżanowski and Lewiński [37, 38] for the planar case: d = 2, m = 3.
We shall show that the problem (2.29) can be deduced from (2.13) by a direct
minimization over the eigenstatesωK and over the eigenvalues λK . We minimize
Gη (see 2.12) over the tensors ωK of eigenstates, treated as vectors in R3, see
(1.8); the result reads

(2.30) min{Gη(λ1, λ2, λ3;ω1,ω2,ω3;τ(1),τ(2)) |
ωK ∈ E2

s , ωK ·ωL = δKL, K = 1, 2, 3} = Wλ(
√
η τ(1),

√
1− η τ(2))

where

Wλ(σ,τ) =
1

2

(
1

λ1
+

1

λ2

)
(‖σ‖2 + ‖τ‖2)(2.31a)

− 1

2

(
1

λ2
− 1

λ1

)√
(‖σ‖2 − ‖τ‖2)2 + 4(σ · τ)2,
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see Eq. (4.48) in [36]. Let us note that the smallest eigenvalue λ3 does not enter
the r.h.s. of (2.30). Moreover, the potential (2.31a) can be expressed by the
eigenvalues of the matrix

[
√
η τ(1)

√
1− ητ(2)]T [

√
η τ(1)

√
1− η τ(2)]

according to the formula

(2.31b) Wλ(σ,τ) =
µ1

λ1
+
µ2

λ2
,

where µ1, µ2 are given by the formulae (2.26) for σ =
√
ητ(1), τ =

√
1− ητ(2).

Now we are ready to perform minimization in (2.13) overωK . This operation
can be shifted under the integral. By using (2.30) we find

(2.32) JΛ,η = min
τ(α)∈Σα(Ω)

α=1,2

min
λK≥0∫

Ω(λ1+λ2+λ3) dx≤Λ

∫
Ω

Wλ(
√
η τ(1),

√
1− η τ(2)) dx.

In the next step we perform minimization over λ1, λ2, λ3. By using (2.31b) we
write the nested problem of (2.32) in the form

(2.33) min

{∫
Ω

(
µ1

λ1
+
µ2

λ2

)
dx
∣∣∣ over λ1, λ2, λ3 such that:

λ1 ≥ λ2 ≥ λ3 ≥ 0,

∫
Ω

(λ1 + λ2 + λ3) dx ≤ Λ

}
.

First, note that the optimal λ3 vanishes (to extend maximally the range of
variation of the moduli λ1, λ2). In the next step we make use of the result (1.15)–
(1.17) and find

(2.34) min

{∫
Ω

(
µ1

λ1
+
µ2

λ2

)
dx
∣∣∣ over λ1, λ2 such that:

λ1 ≥ λ2 ≥ 0,

∫
Ω

(λ1 + λ2) dx ≤ Λ

}
=

1

Λ

(∫
Ω

(
√
µ1 +

√
µ2) dx

)2

.

The above result reduces (2.32) to the form (2.15), (2.29). The minimum in
(2.34) is attained for, see (1.16)

(2.35) λK = E0

√
µK

〈√µ1 +
√
µ2〉

, K = 1, 2.
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Thus, the eigenvalues of the optimal Hooke tensor are expressed by

(2.36) λ̂K(x) = E0
sK([
√
η τ̂(1)(x)

√
1− η τ̂(2)(x)])

〈ρ([
√
η τ̂(1) √1− η τ̂(2)])〉

, K = 1, 2, λ̂3(x) = 0,

where (τ̂(1), τ̂(2)) is the minimizer of the problem (2.29). We see that the method
developed in [36, 37, 38] – to solve the problem (2.30) geometrically – turns out
to be effective. The result (2.16) (for d = 2, n = 2) has been derived in two
different ways.

2.5.2. Discussion of the problem (P ∗
AMD). Let us specify the problem (2.23) for

the considered case of the two load variant (n = 2). The pointwise condition
nested in this problem assumes the form

(2.37) (ε(v(1)(x)), ε(v(2)(x))) ∈ B,

where B is the unit ball in E2
s × E2

s with respect to the Schatten ∞-norm:

(2.38) ‖[ξ, ζ]‖∞ =
1√
2

√
(‖ξ‖2 + ‖ζ‖2) +

√
(‖ξ‖2 − ‖ζ‖2)2 + 4(ξ · ζ)2.

Problem (2.23) assumes the form

(2.39) Ẑη = max
{√

η f (1)(v(1)) +
√

1− η f (2)(v(2)) | over v(1),v(2) ∈ V (Ω)

such that (ε(v(1)(x)), ε(v(2)(x))) ∈ B for a.e. x ∈ Ω
}
.

The ball B is equivalently expressed by

(2.40) B =
{

(ξ, ζ) ∈ E2
s × E2

s | ‖ξ‖ ≤ 1, ‖ζ‖ ≤ 1,

(ξ · ζ)2 ≤ (1− ‖ξ‖2)(1− ‖ζ‖2)
}

or, more specifically, B = B1 ∪B2 and

(2.41)

B1 = {(ξ, ζ) ∈ E2
s × E2

s | ‖ξ‖2 + ‖ζ‖2 ≤ 1},
B2 = {(ξ, ζ) ∈ E2

s × E2
s | ‖ξ‖ ≤ 1, ‖ζ‖ ≤ 1, ‖ξ‖2 + ‖ζ‖2 ≥ 1,

(ξ · ζ)2 ≤ (1− ‖ξ‖2)(1− ‖ζ‖2)}.

The underlined term in (2.40) is inactive (or redundant) if (ξ, ζ) ∈ B1 because
then (1−‖ξ‖2)(1−‖ζ‖2) > ‖ξ‖2‖ζ‖2. In the planar case (d = 2) the tensors ξ, ζ
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can be viewed as vectors in R3 (see the rule (1.8)); the set B2 can be redefined
as below

(2.42) B2 =
{

(ξ, ζ) ∈ E2
s × E2

s | ‖ξ‖ ≤ 1, ‖ζ‖ ≤ 1, ‖ξ‖2 + ‖ζ‖2 ≥ 1,

‖ξ× ζ‖ ≥
√
‖ξ‖2 + ‖ζ‖2 − 1

}
.

Let α = min(∠ξ, ζ),∠(−ξ, ζ)); 0 ≤ α ≤ π/2. The last condition in (2.42)
imposes the lower bound on the angle α, i.e.

(2.43) α ≥ arcsin

(√
1

‖ξ‖2
+

1

‖ζ‖2
− 1

‖ξ‖2‖ζ‖2

)
.

Moreover, note that if ‖ξ‖ = 1 or ‖ζ‖ = 1 then α = π/2 and ξ, ζ are orthogonal.
If (ξ, ζ) ∈ B1 the angle α is arbitrary.

2.6. Case of a single variant of the load

In the case considered we specify: η1 = 1, A = [σ], µ1 = µ1(ATA) =
µ1(σ · σ) = σ · σ = ‖σ‖2. Thus, s1(A) = ‖σ‖, ρ([σ]) = ‖σ‖.

The problem (2.16) assumes the form: find the statically admissible stress
field τ = τ̂ solving the minimization problem:

(2.44) Ẑ = min
τ∈Σ(Ω)

∫
Ω

‖τ‖ dx.

Having found the minimizer τ̂ one can compute the optimal moduli by:

(2.45) λ̂1(x) = E0
‖τ̂(x)‖
〈‖τ̂‖〉

, λ̂K(x) = 0, K = 2, . . . ,m; m = d(d+ 1)/2.

The eigenstate corresponding to the eigenvalue λ̂1 is ω̂1 = τ̂/‖τ̂‖, while other
eigenstates are constructed such that ω̂K · ω̂L = δKL. Hence

(2.46) Ĉ(x) = λ̂1(x)ω̂1(x)⊗ ω̂1(x).

The problem dual to (2.37) has the form

(2.47) Ẑ = max{f(v) | v kinematically admissible such that
‖ε(v(x))‖ ≤ 1 a.e. in Ω}

where f(·) represents the virtual work of a given load.
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The result (2.47) follows from the property of the Euclidean norm: its dual
is also the Euclidean norm, cf. Section 1.2. The problem (2.44) appeared for
the first time in Czarnecki and Lewiński [39], while the problem (2.47) has
been for the first time reported in [4] inspired by the papers of Strang and
Kohn [35] on Michell structures, and Golay and Seppecher [40] on optimal
thickness distribution of in-plane loaded plates. The mathematical theory of the
problems (2.44, 2.47) has been recently put forward in [10].

Remark 2.2. The final result (2.46) discloses that, in case of a single load
variant, assuming all the 21 components of the Hooke tensor as independent
design variables, leads to the highly unstable optimum material design. Two
possible remedies are possible: consider more load conditions (if its number is
bigger than 6 (in 3D) and 3 (in 2D) the material becomes stable) or impose some
material symmetry conditions a priori.

Remark 2.3. Problem (2.37) is the tensorial counterpart of the celebrated
M. Beckmann’s problem, involving a vector unknown:

min

{∫
Ω

‖p‖ dx | over the vector field p = (p1, . . . , pd) satisfying:

div p = 0 in Ω and p · n = g on Γ

}
(Ps)

where g is subject to the condition of its integral over Γ being zero; the problem
dual to (Ps) involves one scalar unknown

max

{∫
Γ

gv dΓ
∣∣∣ over the scalar fields v satisfying: ‖∇v‖ ≤ 1 a.e. in Ω

}
(P ∗s ).

The history as well as the theory of the Beckmann problem can be found
in [41, p. 115]. The Beckmann problem is closely linked with the optimum trans-
portation problem. Its theory is now well developed, see [42], while the numerical
methods are still in progress. It is also worth noting that the pair of problems
((Ps), (P

∗
s )) constitutes the LCP problem of the free material design problem

within the conductivity setting, i.e. for the scalar version of FMD, cf. [10, Sec-
tion 7.2].

2.7. Stress fields in the optimal structure

The aim of the present section is to prove that the stress fields in the optimal
structure induced by the subsequent loads coincide with the relevant components
of the collection of the stress fields minimizing the functional in the auxiliary
problem (2.16). This is not obvious – note that the displacement field in the
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optimal structure subjected to a given load variant does not coincide with the
relevant component of the collection of the displacement fields maximizing the
functional of the auxiliary problem (2.23).

Let us consider a structure made of a material of optimal moduli λ̂K and
optimal eigenstates ω̂K given by (2.17, 2.18). Le I be the set of indices such
that λ̂K > 0. Assume that the load T(α) is applied to the optimal structure. The
emerging stress field is the minimizer of the functional (2.11) where ωK = ω̂K

are optimal eigenstates and λK = λ̂Kare optimal elastic moduli. For this load
variant the compliance ℘̃(α) = ℘(α)(Ĉ) equals

(2.48) ℘̃(α) = min

{∑
K∈I

∫
Ω

1

λ̂K
(ω̂K · τ)2 dx | over τ such that: τ ∈ Σα(Ω)

}
.

Let τ(α) = τ̃(α) be the minimizer of this functional; by using (2.17) we find

(2.49) ℘̃(α) =
1

E0

〈
ρ([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])
〉

×
∫
Ω

∑
K∈I

(ω̂K · τ̃(α))2

sK([
√
η1τ̂

(1)(x) . . .
√
ηnτ̂

(n)(x)])
dx,

hence the expression for the optimal weighted compliance given by

F̃η =
n∑

α=1

ηα℘̃
(α)

assumes the form

(2.50) F̃η =
1

E0

〈
ρ([
√
η1 τ̂

(1) . . .
√
ηnτ̂

(n)])
〉

×
∫
Ω

∑
K∈I

∑n
α=1(ω̂K ·

√
ηα τ̃

(α))2

sK([
√
η1 τ̂

(1)(x) . . .
√
ηn τ̂

(n)(x)])
dx.

We shall prove that τ̃(α) = τ̂(α). At first we shall show that

(2.51) F̃η ≥
1

Λ
(Ẑη)

2

where Ẑη is given by (2.16).

Proof. We make use of the inequality (1.22), where now i = K and

(2.52) aK =
n∑

α=1

(ω̂K ·
√
ηα τ̃

(α))2, uK = sK([
√
η1 τ̂

(1) . . .
√
ηnτ̂

(n)]).
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The inequality (1.22) implies

W
df
=

∫
Ω

∑
K∈I

∑n
α=1(ω̂K ·

√
ηα τ̃

(α))2

sK([
√
η1 τ̂

(1)(x) . . .
√
ηn τ̂

(n)(x)])
dx(2.53)

≥

(∑
K∈I

∫
Ω

√∑n
α=1(ω̂K ·

√
ηα τ̃

(α))2 dx
)2∫

Ω

(∑
K∈I sK([

√
η1 τ̂

(1)(x) . . .
√
ηn τ̂

(n)(x)])
) dx.

Let S̃η = [
√
η1 τ̃

(1) . . .
√
ηnτ̃

(n)], then

(2.54)
n∑

α=1

(ω̂K ·
√
ηα τ̃

(α))2 = ω̂K · (S̃ηS̃Tη ω̂K).

It is sufficient to prove:

(2.55)
∫
Ω

(∑
K∈I

√
ω̂K · (S̃ηS̃Tη ω̂K)

)
dx

≥
∫
Ω

(∑
K∈I

sK([
√
η1 τ̂

(1)(x) . . .
√
ηn τ̂

(n)(x)])
)
dx.

Note that there exists an orthogonal matrix Q6×6 such that ω̂K = QT ω̃K . We
compute

ω̂K · (S̃ηS̃Tη ω̂K) = ω̃K · (QS̃ηS̃
T
η QT ω̃K)(2.56)

= µK(QS̃ηS̃
T
η QT ) = µK(S̃ηS̃

T
η ) = (sK(S̃η))

2

or

(2.57)
√
ω̂K · (S̃ηS̃Tη ω̂K) = sK(S̃η),

hence

(2.58)
∑
K∈I

√
ω̂K · (S̃ηS̃Tη ω̂K) =

∑
K∈I

sK(S̃η) = ‖S̃η‖1

=
∑
K∈I

sK([
√
η1 τ̃

(1)(x) . . .
√
ηnτ̃

(n)(x)]) = ρ([
√
η1 τ̃

(1)(x) . . .
√
ηn τ̃

(n)(x)]).

On the other hand,

(2.59)
∫
Ω

ρ([
√
η1 τ̃

(1) . . .
√
ηnτ̃

(n)]) dx ≥
∫
Ω

ρ([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)]) dx,
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which confirms the estimate (2.55) and, consequently, implies

(2.60) W ≥
∫
Ω

ρ([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])dx = Ẑη.

Now we come back to (2.50) and conclude that

(2.61) F̃η ≥
1

E0|Ω|
(Ẑη)

2 =
1

Λ
(Ẑη)

2.

Thus, indeed, the αth load induces the stress field τ̂(α), an element of the col-
lection (τ̂(1), . . . , τ̂(n)) being the minimizer of (2.16).

3. Isotropic Material Design (IMD)

The present section discusses the Isotropic Material Design method, pro-
posed by Czarnecki [6] and Czarnecki and Wawruch [7] for the single load
variant. For the multiple load variants, for the case of loads being applied non-
simultaneously, the stress-based setting of the IMD has been put forward in [17].
The aim of the present section is to make the theory of IMD complete by deliv-
ering the pairs of the primal and dual problems forming this theory and discuss
the elastic properties of the optimal structure. In this method the bulk modulus
and the shear modulus are design variables. The final optimal design is composed
of three subdomains: (i) where both the moduli are positive, (ii) where the bulk
modulus is positive and the shear modulus vanishes, and (iii) where the bulk
modulus vanishes and the shear modulus is positive. The domains where both
the moduli vanish are cut out from the final design as non-material. Due to this
cutting-out property the IMD method can be viewed as a topology optimization
method, solving simultaneously the problem of optimal shape and of optimal
material distribution.

3.1. The 3D stress-based formulation for n load variants

We consider the problem (2.8), where now tensor C reflects the isotropic
properties of the material. The design variables are the bulk and shear mod-
uli: k, µ. The Hooke tensor enjoys the celebrated Hill representation

(3.1) C = 3k(x)Λ1 + 2µ(x)Λ2,

where

(3.2) Λ1 =
1

3
δijδklei ⊗ ej ⊗ ek ⊗ el, Λ2 = II−Λ1.
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The cost condition is assumed in the form (2.7) and now tr C = 3k + 10µ,
since the eigenvalues of C are: {3k, 2µ, 2µ, 2µ, 2µ, 2µ}. Let us compute first the
contributions to the elastic energy:

(3.3) τ · (Λ1τ) = (Trτ)2, τ · (Λ2τ) = ‖dev τ‖2.

Thus

(3.4) τ · (C−1τ) =
1

3k
(Trτ)2 +

1

2µ
‖dev τ‖2

and, consequently

(3.5)
n∑

α=1

ηατ
(α) · (C−1τ(α)) =

a1

u1
+
a2

u2

where

(3.6)

u1 = 3k, u2 = 10µ,

a1 =
n∑

α=1

(
Tr(
√
ηατ

(α))
)2
, a2 =

n∑
α=1

‖β dev(
√
ηατ

(α))‖2

with β =
√

5.
The problem of minimization of the weighted compliance (with weights ηα,

0 ≤ ηα ≤ 1, η1 + · · ·+ ηn = 1) has the form

(3.7) JΛ,η = min

{∫
Ω

( n∑
α=1

ηατ
(α) · (C−1τ(α))

)
dx
∣∣∣ over τ(1), . . . ,τ(n), k, µ

such that: τ(α) ∈ Σα(Ω); k ≥ 0, µ ≥ 0,

∫
Ω

(3k + 10µ) dx ≤ Λ

}
.

By using the results (3.5), (3.6) we rewrite (3.7) as follows

(3.8) JΛ,η = min

{∫
Ω

(
a1

u1
+
a2

u2

)
dx
∣∣∣ over τ(α) ∈ Σα(Ω), α = 1, . . . , n;

u1 ≥ 0, u2 ≥ 0,

∫
Ω

(u1 + u2) dx ≤ Λ

}
.

The nested problem of minimization over u1, u2 can be solved by using (1.15–
1.17), hence

(3.9) JΛ,η =
1

Λ

(
min

{∫
Ω

(
√
a1+
√
a2) dx

∣∣∣ over τ(α) ∈ Σα(Ω), α = 1, . . . , n

})2
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where the dependence of a1, a2 on τ(1), . . . ,τ(n) has been suppressed. The inte-
grand above can be expressed in terms of the virtual stress fields by

(3.10)
√
a1 +

√
a2 = ρβ

(
[
√
η1 τ

(1) . . .
√
ηn τ

(n)]
)

with using the norm

(3.11) ρβ([σ(1) σ(2) . . . σ(n)]) =

√√√√ n∑
α=1

(Trσ(α))2 + β

√√√√ n∑
α=1

‖devσ(α)‖2

and β =
√

5. The optimal u1, u2 read, see (1.16) and ( 2.35)

(3.12) u1 = E0

√
a1

〈√a1 +
√
a2〉

, u2 = E0

√
a2

〈√a1 +
√
a2〉

.

We come back to (3.9) and write JΛ,η = 1
Λ(Ẑη)

2, where Ẑη is given by the
problem: find (τ̂(1), . . . , τ̂(n)), the minimizer of the problem

(3.13) Ẑη = min
τ(α)∈Σα(Ω)
α=1,...,n

∫
Ω

ρβ
(
[
√
η1 τ

(1) . . .
√
ηn τ

(n)]
)
dx (PIMD)

where β =
√

5.
The minimizer (τ̂(1), . . . , τ̂(n)) determines the optimal moduli of isotropy

(3.14)

3k̂(x) = E0

√∑n
α=1(Tr(

√
ηα τ̂

(α)))2

〈ρ√5([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])〉
,

10µ̂(x) = E0

√
5
√∑n

α=1 ‖dev(
√
ηα τ̂

(α))‖2

〈ρ√5([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])〉
.

It is seen that 〈3k̂ + 10µ̂〉 = E0; the cost condition is satisfied sharply.

3.2. The 3D strain-based formulation for n load variants

The problem (3.13) can be rearranged to its dual form; it reads: find (v̂(1), v̂(2),
. . . , v̂(n)), the maximizer of the problem

(3.15) Ẑη = max

{ n∑
α=1

√
ηα f

(α)(v(α))
∣∣∣ over v(1), . . . ,v(n) ∈ V (Ω) such that

ρoβ([ε(v(1)(x)) . . . ε(v(n)(x))]) ≤ 1 a.e. in Ω

}
(P ∗IMD)
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where β =
√

5 and ρoβ(·) is a function polar to the norm ρβ(·), see (1.11), or

(3.16) ρoβ([ε(1) . . . ε(n)]) = max
σ(α)∈E2

s

σ(α) 6=0
α=1,...,n

∑n
α=1 ε

(α) · σ(α)

ρβ([σ(1) . . .σ(n)])
.

We shall find the explicit form of this function. According to (1.4):

(3.17) ε(α) · σ(α) = (Trσ(α))(Tr ε(α)) + devσ(α) · dev ε(α).

Let us introduce: p = (p(1), . . . , p(n)) , e = (e(1), . . . , e(n)) with p(α) = Trσ(α),
e(α) = Tr ε(α) and q = (q(1), . . . ,q(n)) , b = (b(1), . . . ,b(n)) with q(α) =
devσ(α), b(α) = dev ε(α). We rewrite (3.17)

(3.18)
n∑

α=1

ε(α) · σ(α) = p · e + q · b

and express the norm (3.11) as follows

(3.19) ρβ([σ(1) . . .σ(n)]) = ‖p‖+ β‖q‖.

The dual norm is given by

(3.20) ρoβ([ε(1) . . . ε(n)]) = max
p∈Rn,p6=0
q∈R6n,q6=0

p · e + q · b
‖p‖+ β‖q‖

.

To maximize the numerator we put:

(3.21) p = ‖p‖ e

‖e‖
, q = ‖q‖ b

‖b‖
.

Hence

(3.22) ρoβ([ε(1) . . . ε(n)]) = max
x>0, y>0

‖e‖x+ ‖b‖y
x+ βy

,

where x = ‖p‖, y = ‖q‖; by performing the maximization operation we get

(3.23) ρoβ([ε(1) . . . ε(n)]) = max

{
‖e‖, 1

β
‖b‖

}
.

Thus, the norm dual to the norm (3.11) has the form

(3.24) ρoβ([ε(1) . . . ε(n)]) = max

{√√√√ n∑
α=1

(Tr ε(α))2,
1

β

√√√√ n∑
α=1

‖dev ε(α)‖2
}
.

Just this norm specifies the point-wise condition involved in the problem (3.15).
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3.3. The 2D formulation for n load variants

In the 2D setting the representation of the isotropic Hooke tensor reads

(3.25) C = 2k(x)Λ1 + 2µ(x)Λ2

where the projectors are given by

(3.26) Λ1 = 1
2δijδklei ⊗ ej ⊗ ek ⊗ el, Λ2 = II−Λ1.

The eigenvalues of tensor C are: {2k, 2µ, 2µ}, hence tr C = 2k + 4µ. The cost
condition (2.7) has the form 〈2k + 4µ〉 ≤ E0. In the 2D setting we write: Trσ =
(trσ)/

√
2 and then the formulae (3.3) hold true. The density of complementary

energy equals

(3.27) τ ·C−1τ =
1

2k
(Trτ)2 +

1

2µ
‖dev τ‖2.

Thus, the weighted energy density is expressed by (3.5), (3.6) with β =
√

2.
Proceeding as in Section 3.1 we get Jη = 1

Λ(Ẑη)
2, where Ẑη is given as in (3.13),

only now β =
√

2. Having solved the latter problem, one can compute the optimal
moduli of isotropy by

(3.28)

2k̂(x) = E0

√∑n
α=1

(
Tr(
√
ηα τ̂

(α))
)2〈

ρ√2([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])
〉 ,

4µ̂(x) = E0

√
2
√∑n

α=1 ‖dev(
√
ηα τ̂

(α))‖2〈
ρ√2([

√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])
〉 .

We note that 〈2k̂ + 4µ̂〉 = E0; the cost condition is satisfied sharply. The problem
dual to (3.13) has the form (3.15), where β =

√
2.

3.4. On emerging the auxetic properties of the optimal material

The bulk and shear moduli are two independent design variables of the IMD
method, subjected only to the conditions of being non-negative. Consequently,
the optimal Poisson ratio ν̂ is not restricted to be positive. Thus, the optimum
design method IMD extends the possible values of the Poisson ratio beyond the
range observed in nature (the nature teaches us that the Poisson ratio is positive)
toward the broader ranges implied by the condition of non-negative definiteness
of elastic energy: −1 ≤ ν̂ ≤ 1/2, −1 ≤ ν̂ ≤ 1, for d = 3, d = 2, respectively. The
optimal bulk and shear moduli are determined by the stress fields solving the
problem (3.13), where β =

√
5, β =

√
2 for d = 3, d = 2, respectively. Since these
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stress fields are independent of any data concerning elastic moduli, the shape
of the stress regime (using Cherkaev’s nomenclature [11]) corresponding to the
condition of auxeticity ν̂(x) ≤ 0 will be free of any parameters. These regimes
for 3D and 2D settings are constructed below.

A. The 3D setting
In the spatial problem the Poisson ratio is expressed by the bulk and shear

moduli according to the known rule:

(3.29) ν =
3k − 2µ

2(3k + µ)
,

which, by the way, becomes recently the most fundamental formula of the me-
chanics of composites.

The following subdomains of the design domain are of special interest:
(a) k̂(x) = 0, µ̂(x) > 0. Then, due to the numerator in (3.28)1 being a norm,

the minimizer (τ̂(1), . . . , τ̂(n)) is such that tr τ̂(α)(x) = 0, α = 1, . . . , n and there
ν̂(x) = −1.

(b) k̂(x) > 0, µ̂(x) = 0. Then, due to the numerator in (3.28)2 being a norm,
the minimizer (τ̂(1), . . . , τ̂(n)) is such that dev τ̂(α)(x) = 0, α = 1, . . . , n and
there ν̂(x) = 1/2.

(c) 3k̂(x) − 2µ̂(x) < 0. Then ν̂(x) < 0. Let us substitute (3.14) into the
inequality above. We note that the subdomain (c) enjoys the auxetic property
at a point x, if the solution (τ̂(1), . . . , τ̂(n)) of the problem (3.13) satisfies the
property:

(3.30)
∑n

α=1 ηα(tr(τ̂(α)(x)))2∑n
α=1 ηα‖dev τ̂(α)(x))‖2

<
3

5
.

If n = 1, then the above condition reduces to the inequality

(3.31)
|tr τ̂(x)|
‖dev τ̂(x)‖

<

√
3

5

which can be expressed in terms of principal stresses as follows (see (1.5, 1.6))

(3.32)
|τ̂I(x) + τ̂II(x) + τ̂III(x)|√

(τ̂I(x)− τ̂II(x))2 + (τ̂I(x)− τ̂III(x))2 + (τ̂II(x)− τ̂III(x))2
<

1√
5

or, equivalently

(3.33) (τ̂I(x))2 + (τ̂II(x))2 + (τ̂III(x))2

+ 4(τ̂I(x)τ̂II(x) + τ̂III(x)τ̂I(x) + τ̂II(x)τ̂III(x)) < 0.

The regime (3.33) lies between the two surfaces shown in Fig. 2.
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Fig. 2. If observed within the 3D framework of principal stresses, the regime of auxeticity
lies between the two surfaces displayed.

B. The 2D setting
The 2D counterpart of the formula (3.29) is ν = k−µ

k+µ . The following subdo-
mains of the design domain are worth of considering:

(a) k̂(x) = 0, µ̂(x) > 0. Then the minimizer (τ̂(1), . . . , τ̂(n)) is such that
tr τ̂(α)(x) = 0, α = 1, . . . , n and there ν̂(x) = −1.

(b) k̂(x) > 0, µ̂(x) = 0. Then the minimizer (τ̂(1), . . . , τ̂(n)) is such that
dev τ̂(α)(x) = 0, α = 1, . . . , n and there ν̂(x) = 1.

(c) k̂(x)−µ̂(x) < 0. Then ν̂(x) < 0 and just this subdomain enjoys the auxetic
property at a point x, if the solution (τ̂(1)(x), . . . , τ̂(n)(x)) of the problem (3.13)
satisfies the property:

(3.34)
n∑

α=1

ηα(tr(τ̂(α)(x)))2 <

n∑
α=1

ηα‖dev(τ̂(α)(x))‖2.

If n = 1 then the condition above reduces to

(3.35) |tr τ̂(x)| < ‖dev τ̂(x)‖

or, if expressed in terms of principal stresses, this condition assumes the form

(3.36) (τ̂I(x))2 + (τ̂II(x))2 + 6τ̂I(x)τ̂II(x) < 0.

Alternatively,

(3.37) (τ̂I(x) + (3 + 2
√

2 )τ̂II(x))((3 + 2
√

2)τ̂I(x) + τ̂II(x)) < 0.

The regime (3.37) is composed of two cones in the plane, see Fig. 3.
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Fig. 3. If observed within the framework of principal stresses, the regime of auxeticity for
the 2D setting assumes the form of a cone displayed above.

Remark 3.1. The assumption of isotropy is kept throughout the optimiza-
tion process, hence the final design cannot become non-isotropic. No jump to
a new class of anisotropy is possible. The optimization may introduce instabil-
ities mentioned above, but, even unstable, the material remains isotropic. The
same remark applies to the YMD method discussed in the next section.

3.5. The stress fields in the optimal structure

Assume that the 3D optimized structure made of the optimal material of
moduli k̂(x), µ̂(x) is subjected to the α-th load. This load induces a stress
field τ̃(α). We shall prove that this stress field coincides with the stress field τ̂(α)

being the α-th component of the solution to the problem (PIMD), cf. (3.13).
The α-th compliance of the optimal structure is equal to

℘(α) =

∫
Ω

(τ̃(α) · (Ĉ−1τ̃(α))) dx(3.38)

= min

{∫
Ω

(τ · (Ĉ−1τ)) dx
∣∣∣ over τ ∈ Σα(Ω)

}
where
(3.39) τ · Ĉ−1τ =

1

3k̂
(Trτ)2 +

1

10µ̂
‖β dev τ‖2

and β =
√

5. Substitution of (3.14) leads to the formula for the optimal compli-
ance as below

(3.40) ℘(α) =

Ẑη
E0

min
τ∈Σα(Ω)

∫
Ω

[
(Tr(τ))2√∑n

γ=1(Tr(
√
ηγ τ̂

(γ)))2
+ β

‖dev(τ)‖2√∑n
γ=1 ‖dev(

√
ηγ τ̂

(γ))‖2

]
dx.
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Before computing the weighted compliance we insert τ(α) = τ̃(α) and introduce
the notation

(3.41)

ρ̃1 =

√√√√ n∑
α=1

(Tr(
√
ηα τ̃

(α)))2, ρ̃2 =

√√√√ n∑
α=1

‖dev(
√
ηα τ̃

(α))‖2

ρ̂1 =

√√√√ n∑
α=1

(Tr(
√
ηα τ̂

(α)))2, ρ̂2 =

√√√√ n∑
α=1

‖dev(
√
ηα τ̂

(α))‖2.

The weighted compliance equals

(3.42) Fη =
Ẑη
E0

∫
Ω

[
(ρ̃1)2

ρ̂1
+ β

(ρ̃2)2

ρ̂2

]
dx.

According to (1.22) the following estimates are satisfied

(3.43)
∫
Ω

(ρ̃i)
2

ρ̂i
dx ≥

(∫
Ω ρ̃i dx

)2∫
Ω ρ̂idx

, i = 1, 2

and because the collection (τ̂(1), . . . , τ̂(n)) is the minimizer of (3.13), the estimate

(3.44)
∫
Ω

(ρ̃1 + βρ̃2) dx ≥
∫
Ω

(ρ̂1 + βρ̂2) dx

holds. Now we shall prove that

(3.45)
(∫

Ω ρ̃1 dx
)2∫

Ω ρ̂1 dx
+ β

(∫
Ω ρ̃2 dx)2∫
Ω ρ̂2 dx

≥
∫
Ω

(ρ̂1 + βρ̂2) dx.

To prove the above estimate let us introduce the notation

(3.46) Si =

∫
Ω

ρ̂i dx, Ei =

∫
Ω

(ρ̃i − ρ̂i) dx.

The estimate (3.44) is equivalent to

(3.47) E1 + βE2 ≥ 0, β > 0,

while due to Si > 0, the above inequalities lead to

(3.48)
(S1 + E1)2

S1
+ β

(S2 + E2)2

S2
≥ S1 + βS2,
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which confirms (3.45). Let us come back to (3.42). By using (3.43), (3.44), (3.45)
we estimate Fη as below

(3.49) Fη ≥
Ẑη
E0

∫
Ω

(ρ̂1 + βρ̂2) dx =
1

Λ
(Ẑη)

2

and the equality is attained only if τ̃(α) = τ̂(α). Since we know that Fη =

(Ẑη)
2/Λ, the equality τ̃(α) = τ̂(α) holds. Thus, the solution to the problem (3.13)

determines the stress fields in the optimal structure subjected to subsequent loads
T(1), . . . ,T(n).

4. Young’s Modulus Design (YMD)

Skeletal microstructures of given layout of ligaments of shapes of bars are
characterized by effective Poisson’s ratios being almost independent of the lig-
aments’ areas of cross sections. Controlling the cross-sections means controlling
the effective Young modulus E(x), see [23]. This is one of the reasons to develop
such a version of the free material design (called YMD) in which Poisson’s ratio
is fixed and Young’s modulus is the only design variable. The hitherto published
results on YMD referred to 3D case. The present section is aimed at constructing
the pairs of mutually dual problems for the YMD method for both cases: d = 3,
d = 2. Moreover, the novelty of the present exposition lies in disclosing that
the stress fields in the optimal structure induced by subsequent loads coincide
with the components of the minimizer of the auxiliary problem (4.6) formulated
below.

4.1. The 3D setting

In case of isotropy, if ν = const, the bulk and shear moduli are expressed by
Young’s modulus and Poisson’s ratio according to

(4.1) k(x) =
E(x)

3(1− 2ν)
, µ(x) =

E(x)

2(1 + ν)
.

Hence

(4.2) tr C = aE(x), a =
6− 9ν

(1 + ν)(1− 2ν)
,

where a is treated as a given parameter, since the Poisson ratio ν is treated as
a fixed one. The Hooke tensor may be represented by

(4.3) C = E1(x)G, G =
1 + ν

6− 9ν
Λ1 +

1− 2ν

6− 9ν
Λ2,
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where E1(x) = aE(x) is the unit cost. The cost condition (2.7) assumes the form
〈E1〉 ≤ E0, E0 = Λ/|Ω|. Note that tr G = 1. The inverse of tensor G has the
form

(4.4) G−1 =
6− 9ν

1 + ν
Λ1 +

6− 9ν

1− 2ν
Λ2.

The problem of minimizing the weighted compliance (2.6) reads

(4.5) JΛ,η = min

{∫
Ω

1

E1

( n∑
α=1

ηατ
(α) · (G−1τ(α))

)
dx
∣∣∣

τ(α) ∈ Σα(Ω), α = 1, . . . , n; E1 ≥ 0, 〈E1〉 ≤ E0

}
.

Upon performing minimization over E1 one finds JΛ,η = 1
Λ(Ẑη)

2, where Ẑη is
given by the problem: find (τ̂(1), . . . , τ̂(n)), the minimizer of the problem

(4.6) Ẑη = min
τ(α)∈Σα(Ω)
α=1,...,n

∫
Ω

ρ#([
√
η1 τ

(1) . . .
√
ηn τ

(n)])dx (PYMD)

the integrand being the norm given by

(4.7) ρ#([σ(1) . . .σ(n)]) =
√
σ(1) ·G−1σ(1) + · · ·+ σ(n) ·G−1σ(n)

or, equivalently

(4.8) ρ#([σ(1) · · ·σ(n)]) =

√√√√6− 9ν

1 + ν

n∑
α=1

(Trσ(α))2 +
6− 9ν

1− 2ν

n∑
α=1

‖devσ(α)‖2.

On finding the minimizer (τ̂(1), . . . , τ̂(n)) of (4.6) we can compute the optimal
modulus:

(4.9) Ê1(x) = E0
ρ#([
√
η1 τ̂

(1)(x) . . .
√
ηn τ̂

(n)(x)])

〈ρ#([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])〉
.

Thus, the optimal Young modulus equals: Ê(x)= Ê1(x)/a. We see that 〈Ê1〉=E0,
hence the cost condition (2.7) is satisfied sharply.

To formulate the problem dual to (4.6) one should construct the function
dual to (4.7), or

(4.10) ρo#([ε(1) . . . ε(n)]) = max
σ(α)∈E2

s

σ(α) 6=0
α=1,...,n

∑n
α=1 ε

(α) · σ(α)

ρ#([σ(1) . . .σ(n)])
.
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The maximization operation above can be performed analytically. We find

(4.11) ρ0
#([ε(1) . . . ε(n)]) =

√
ε(1) · (Gε(1)) + · · ·+ ε(n) · (Gε(n)).

Thus, the norm dual to (4.8) has the form

(4.12) ρ0
#([ε(1) . . . ε(n)]) =

√√√√ 1 + ν

6− 9ν

n∑
α=1

(Tr ε(α))2 +
1− 2ν

6− 9ν

n∑
α=1

‖dev ε(α)‖2.

Now, we are ready to form the problem dual to (4.6): find (v̂(1), . . . , v̂(n)), the
maximizer of the problem:

(4.13) Ẑη = max

{ n∑
α=1

√
ηα f

(α)(v(α))
∣∣∣ over v(1), . . . ,v(n) ∈ V (Ω)

such that ρo#([ε(v(1)(x)) . . . ε(v(n)(x))]) ≤ 1 a.e. in Ω

}
(P ∗YMD).

Thus, the YMD method reduces to solving the pair : (PYMD), (P ∗YMD) (see
(4.6), (4.13)) of mutually dual problems.

4.2. The 2D setting

The counterparts of the formulae (4.1) read

(4.14) k(x) =
E(x)

2(1− ν)
, µ(x) =

E(x)

2(1 + ν)
.

The unit cost of the design is given by

(4.15) tr C = aE(x), a =
3− ν
1− ν2

.

The main design variable is now E1(x) = aE(x) and is subject to the cost
condition 〈E1〉 ≤ E0.

The problem of minimizing the weighted compliance has the form (4.5) with

(4.16) G =
1 + ν

3− ν
Λ1 +

1− ν
3− ν

Λ2, G−1 =
3− ν
1 + ν

Λ1 +
3− ν
1− ν

Λ2.

The reduced problem (4.6) involves now the integrand given by

(4.17) ρ#([τ(1) . . .τ(n)]) =

√√√√3− ν
1 + ν

n∑
α=1

(Trτ(α))2 +
3− ν
1− ν

n∑
α=1

‖dev τ(α)‖2.
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The optimal modulus Ê1 is given by (4.9) and satisfies 〈Ê1〉 = E0, hence the
cost condition is fulfilled.

The problem (4.13) involves the locking condition for virtual strains being
given by the function polar to (4.17) or

(4.18) ρo#([ε(1) . . . ε(n)]) =

√√√√1 + ν

3− ν

n∑
α=1

(Tr ε(α))2 +
1− ν
3− ν

n∑
α=1

‖dev ε(α)‖2.

The problem is reduced to the LCP scheme composed of (4.6), (4.13) with the
norms ρ#, ρo# given by (4.17), (4.18).

4.3. Construction of the stress fields in the optimal structure

Consider now the elastic properties of the structure made of the material
of optimal Young’s modulus. The state of stress induced in this structure by
the load of index α is denoted by τ̃(α). We shall prove that this state of stress
coincides with the stress field τ̂(α) being the αth component of the minimizer
(τ̂(1) . . . τ̂(n)) of the problem (4.6). The starting point is the equality

℘(α) =

∫
Ω

1

Ê1(x)
(τ̃(α) · (G−1τ̃(α))) dx(4.19)

= min

{∫
Ω

1

Ê1(x)
(τ · (G−1τ)) dx

∣∣∣ over τ ∈ Σα(Ω)

}
.

Since τ̃(α) is the minimizer of the problem above, we have

Fη =

∫
Ω

1

Ê1(x)

n∑
α=1

(
√
ηα τ̃

(α)) · (G−1(
√
ηα τ̃

(α))) dx(4.20)

=
1

E0

〈
ρ#([
√
η1 τ̂

(1) . . .
√
ηn τ̂

(n)])
〉
J1

where

(4.21) J1 =

∫
Ω

(ρ#([
√
η1 τ̃

(1)(x) . . .
√
ηn τ̃

(n)(x)]))2

ρ#([
√
η1τ̂

(1)(x) . . .
√
ηnτ̂

(n)(x)])
dx.

By using the inequality (3.45) and the inequality

(4.22)
∫
Ω

ρ#([
√
η1 τ̃

(1) . . .
√
ηn τ̃

(n)]) dx ≥
∫
Ω

ρ#([
√
η1 τ̂

(1) . . .
√
ηnτ̂

(n)]) dx
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we note that

(4.23) J1 ≥
∫
Ω

ρ#([
√
η1 τ̂

(1)(x) . . .
√
ηn τ̂

(n)(x)]) dx.

This implies Fη ≥ (Ẑη)
2/Λ and the equality is attained for τ̃(α) = τ̂(α). We con-

clude that the solution to the problem (4.6) determines the stress fields occurring
in the optimal structure for the subsequent load cases.

5. Conclusions

The problem of minimization of the weighted sum of compliances over the
fields of elastic moduli forming the Hooke tensor, with the unit cost equal to
its trace, reduces to the so-called linear constrained problem (LCP) composed
of two mutually dual auxiliary problems (P ), and (P ∗). The former involves the
stress fields corresponding to the subsequent load variants. The latter involves
the displacement fields; the associated strain fields satisfy the locking pointwise
conditions. In the problems of optimization of:

– anisotropy (AMD);
– distribution of the bulk and shear moduli of the isotropic media (IMD);
– distribution of the Young modulus under the condition of the Poisson ratio
being predefined (YMD);

the auxiliary problems of the LCP setting have been successfully formulated,
including the explicit constructions of the integrands of the primal problems
and the locking loci in their dual versions. In particular, the locking locus of
the problem (P ∗AMD) has been constructed; it is the unit ball in E2

s × E2
s with

respect to the Schatten∞-norm. In the 2D case, for n = 2, its explicit definition
has been found. It occurs that this ball is naturally divided into an internal ball
(where the angles between the virtual strain fields are arbitrary) surrounded by
the domain, where these angles are bounded from below. Along the edge of the
locking locus the virtual strains are orthogonal.

Within each FMD problem considered the cutting-off property holds: the
material part of the structure is just the effective domain of the minimizer of the
problems: (PAMD), (PIMD), (PYMD) with the integrands of linear growth.

The paper proves that the subsequent stress fields of the collections of the
stress fields forming the minimizers of the primal auxiliary problems determine
the fields of stress in the optimum structure if subjected to the subsequent load
variants. This fact underlines a key role of the stress-based auxiliary problems
of the AMD, IMD and YMD methods in the process of optimum designing.

The optimum design settings: AMD, YMD and IMD do not deliver algorithms
of forming the underlying microstructure of the material with given optimal ef-



Optimum design of elastic moduli. . . 63

fective characteristics. One of the material forming method is to design a graded
microstructure of spatially varying properties by constructing the family of peri-
odicity cells Y (x) which, according to the theory of homogenization, stands for
the family of representative volume elements (RVE) of the optimal composite.
The simplest concept is to choose a skeletal microstructure which exhibits an al-
most constant value of the effective Poisson ratio despite variation of transverse
dimensions of ligaments. Such a concept has been put forward in [23], where also
the algorithm of 3D printing has been described, enabling manufacturing some
prototypes of planar handles.

Manufacturing planar RVEs of isotropic properties is based on the known
property of isotropy in the plane being generated by rotation by 120◦ of a one
third of a hexagonal periodicity cell, as revealed in [43–45] and used in [46,
47, 25] and just very recently applied by Casalotti et al. [48]. Extension of
this idea toward a spatial design of macroscopically isotropic RVEs is an open
question. Instead, in 3D setting the cubic symmetry is a natural choice, cf. the
micro-lattices of metamaterials described in [49].

Acknowledgements

The paper was prepared within the Research Grant no 2019/33/B/ST8/00325
financed by the National Science Centre (Poland), entitled: Merging the optimum
design problems of structural topology and of the optimal choice of material char-
acteristics. The theoretical foundations and numerical methods.

The author thanks the anonymous Reviewer for having called attention to
the papers by P. Bechterew on the theory of Hooke’s law.

References

1. M.P. Bendsøe, J.M. Guedes, R.B. Haber, P. Pedersen, J.E. Taylor, An analytical
model to predict optimal material properties in the context of optimal structural design,
Journal of Applied Mechanics, Transactions of ASME, 61, 4, 930–937, 1994.

2. M.P. Bendsøe, A.R. Diaz, R. Lipton, J.E. Taylor, Optimal design of material
properties and material distribution for multiple loading conditions, International Journal
for Numerical Methods in Engineering, 38, 1149–1170, 1995.

3. A.G. Weldeyesus, M. Stolpe, Free material optimization for laminated plates and
shells, Structural and Multidisciplinary Optimization, 53, 1335–1347, 2016.

4. S. Czarnecki, T. Lewiński, A stress-based formulation of the free material design prob-
lem with the trace constraint and multiple load conditions, Structural and Multidisciplinary
Optimization, 49, 707–731, 2014.

5. R. Czubacki, T. Lewiński, Topology optimization of spatial continuum structures made
of non-homogeneous material of cubic symmetry, Journal of Mechanics of Materials and
Structures, 10, 519–535, 2015.



64 T. Lewiński

6. S. Czarnecki, Isotropic material design, Computational Methods in Science and Tech-
nology, 21, 2, 49–64, 2015.

7. S. Czarnecki, P. Wawruch, The emergence of auxetic material as a result of optimal
isotropic design, Physica Status Solidi B: Basic Solid State Physics, 252, 7, 1620–1630,
2015.

8. U. Ringertz, On finding the optimal distribution of material properties, Structural Op-
timization, 5, 265–267, 1993.

9. J. Haslinger, M. Kočvara, G. Leugering, M. Stingl,Multidisciplinary free material
optimization, SIAM Journal on Applied Mathematics, 70, 7, 2709–2728, 2010.

10. K. Bołbotowski, T. Lewiński, Setting the free material design problem through the
methods of optimal mass distribution, arXiv preprint: https://arxiv.org/abs/2004.11084,
2020.

11. A. Cherkaev, Variational Methods for Structural Optimization, Springer, Berlin, Hei-
delberg, 2000.

12. G. Allaire, Shape Optimization by the Homogenization Method, Springer, New York,
2002.

13. A. Cherkaev, G. Dzierżanowski, Three-phase plane composites of minimal elastic
stress energy: high-porosity structures, International Journal of Solids and Structures, 50,
25–26, 4145–4160, 2013.

14. G. Bouchitté, I. Fragalà, Optimality conditions for mass design problems and appli-
cations to thin plates, Archive for Rational Mechanics and Analysis, 184, 257–284, 2007.

15. G. Bouchitté, G. Buttazzo, Characterization of optimal shapes and masses through
Monge–Kantorovich equation, Journal of the European Mathematical Society, 3, 139–168,
2001.

16. S. Czarnecki, T. Lewiński, On material design by the optimal choice of Young’s modu-
lus distribution, International Journal of Solids and Structures, 110–111, 315–331, 2017.

17. S. Czarnecki, T. Lewiński, Pareto optimal design of non-homogeneous isotropic ma-
terial properties for the multiple loading conditions, Physica Status Solidi B: Basic Solid
State Physics, 254, 1600821, 1–14, 2017.

18. R.T. Marler, J.S. Arora, The weighted sum method for multi-objective optimization:
new insights, Structural and Multidisciplinary Optimization, 41, 853–862, 2010.

19. E. Cherkaev, A. Cherkaev, Minimax optimization problem of structural design, Com-
puters and Structures, 86, 1426–1435, 2008.

20. R.Segev, Load capacity of bodies, International Journal of Nonlinear Mechanics, 42, 250–
257, 2007.

21. I. Goda, J.F. Ganghoffer, S. Czarnecki, P.Wawruch, T. Lewiński, Optimal in-
ternal architectures of femoral bone based on relaxation by homogenization and isotropic
material design, Mechanics Research Communications, 76, 64–71, 2016.

22. R. Czubacki, J.-F. Ganghoffer, T. Lewiński, Simultaneous design of optimal shape
and local cubic material characteristics, Engineering Transactions, 65, 11–17, 2017.

23. T. Lewiński, S. Czarnecki, R. Czubacki, T. Łukasiak, P. Wawruch, Constrained
versions of the free material design methods and their applications in 3D printing, [in:]



Optimum design of elastic moduli. . . 65

A. Schumacher, Th. Vietor, S. Fiebig, K.-U. Bletzinger, K. Maute [eds.], Advances in
Structural and Multidisciplinary Optimization, pp. 1317–1332, Springer, Cham, Switzer-
land, 2018.

24. J. F. Ganghoffer, I. Goda, A.A. Novotny, R. Rahouadj, J. Sokołowski, Ho-
mogenized couple stress model of optimal auxetic microstructures computed by topology
optimization, ZAMM (Journal of Applied Mathematics and Mechanics), 98, 696–717,
2018.

25. S. Czarnecki,T. Łukasiak, Recovery of the isotropic and cubic auxetic microstructures
appearing in the least compliant continuum two-dimensional bodies, Physica Status So-
lidi B: Basic Solid State Physics, 257, 10, 2070036, 2020.

26. R. Bhatia, Matrix Analysis, Springer Science, Heidelberg, 1997.

27. B.D. Annin, N.I. Ostrosablin, Anisotropy of elastic properties of materials, Journal
of Applied Mechanics and Technical Physics, 49, 998–1014, 2008.

28. M.M. Mehrabadi, S.C. Cowin, Eigentensors of linear anisotropic elastic materials,
Quarterly Journal of Mechanics and Applied Mathematics, 43, 15–41, 1990.

29. A. Blinowski, J. Ostrowska-Maciejewska, J. Rychlewski, Two-dimensional
Hooke’s tensors-isotropic decomposition, effective symmetry criteria, Archives of Mechan-
ics, 48, 325–345, 1996.

30. M. Moakher, Fourth-order Cartesian tensors: old and new facts, notions and applica-
tions, Quarterly Journal of Mechanics and Applied Mathematics, 61, 181–203, 2008.

31. J. Rychlewski, On Hooke’s law, Journal of Applied Mathematics and Mechanics, 48,
303–314, 1984.

32. F. Demengel, P. Suquet, On locking materials, Acta Applicandae Mathematicae, 6,
185–211, 1986.

33. W. Hemp, Optimum Structures, Clarendon Press, Oxford, 1973.

34. T. Lewiński, T. Sokół, C. Graczykowski, Michell Structures, Springer, Cham, 2019.

35. G. Strang, R.V. Kohn, Hencky–Prandtl nets and constrained Michell trusses, Computer
Methods in Applied Mechanics and Engineeering, 36, 2, 207–222, 1983.

36. S. Czarnecki, T. Lewiński The stiffest designs of elastic plates. Vector optimization for
two loading conditions, Computer Methods in Applied Mechanics and Engineering, 200,
1708–1728, 2011.

37. G. Dzierżanowski, T. Lewiński, Compliance minimization of thin plates made of mate-
rial with predefined Kelvin moduli. Part I. Solving the local optimization problem, Archives
of Mechanics, 64, 21–40, 2012.

38. G. Dzierżanowski, T. Lewiński, Compliance minimization of thin plates made of ma-
terial with predefined Kelvin moduli. Part II. The effective boundary value problem and
exemplary solutions, Archives of Mechanics, 64, 111–135, 2012.

39. S. Czarnecki, T. Lewiński, A stress-based formulation of the free material design prob-
lem with the trace constraint and single loading condition, Bulletin of the Polish Academy
of Sciences: Technical Sciences, 60, 191–204, 2012.

40. F. Golay, P. Seppecher, Locking materials and the topology of optimal shapes, Euro-
pean Journal of Mechanics A, Solids, 20, 631–644, 2001.



66 T. Lewiński

41. F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkäuser, New York,
2015.

42. W. Górny, P. Rybka, A. Sabra, Special cases of the planar least gradient problem,
Nonlinear Analysis: Theory, Methods & Applications, 151, 66–95, 2017.

43. T. Lewiński, Two versions of Woźniak’s continuum model of hexagonal-type grid plates,
Journal of Theoretical and Applied Mechanics, 22, 389–405, 1984.

44. T. Lewiński, Differential models of hexagonal-type grid plates, Journal of Theoretical and
Applied Mechanics, 22, 407–421, 1984.

45. T. Lewiński, Physical correctness of Cosserat-type models of honeycomb grid plates, Jour-
nal of Theoretical and Applied Mechanics, 23, 53–69, 1985.

46. S. Czarnecki, T. Łukasiak, T. Lewiński, The isotropic and cubic material designs.
Recovery of the underlying microstructures appearing in the least compliant continuum
bodies, Materials, 10, 10, 1137, 2017.

47. T. Łukasiak, Macroscopically isotropic and cubic-isotropic two-material periodic struc-
tures constructed by the inverse-homogenization method, [in:] A.Schumacher, Th. Vietor,
S. Fiebig, K.-U. Bletzinger, K. Maute [eds.], Advances in Structural and Multidisciplinary
Optimization, pp. 1333–1348, Springer, Cham, Switzerland, 2018.

48. A.Casalotti, F. D’Annibale, G. Rosi, Multi-scale design of an architected composite
structure with optimized graded properties, Composite Structures, 112608, available online
2020.

49. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss,
J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang,
C.M. Spadaccini, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 6190,
1373–1377, 2014.

Received Received July 10, 2020; revised version October 23, 2020.
Published online January 21, 2021.


