PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low intensity surplus activated sludge pretreatment before anaerobic digestion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sewage sludge (municipal, or industrial) treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture) and the second being incineration (ash production), although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs) reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy) production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS) is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of) of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional production and 52% of the total or volatile solids reduction has been confirmed.
Rocznik
Strony
50--57
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
  • University of Bielsko-Biala, Poland, Faculty of Materials, Civil and Environmental Engineering, Institute of Environmental Protection and Engineering
autor
  • University of Bielsko-Biala, Poland, Faculty of Materials, Civil and Environmental Engineering, Institute of Environmental Protection and Engineering
Bibliografia
  • [1]. APHA (2012) Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA.
  • [2]. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F. & Lens, P.N.L. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste, Applied Energy, 123, pp. 143-156.
  • [3]. Carrère, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenes, J.P., Steyer, J.P. & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: A review, Journal of Hazardous Materials, 183, pp. 1-15.
  • [4]. Chen, Y., Jiang, S., Yuan, H., Zhou, Q. & Gu, G. (2007). Hydrolysis and acidification of waste activated sludge at different pHs, Water Research, 41, pp. 683-689.
  • [5]. Climent, M., Ferrer, I., Baeza, M.M., Artola, A., Vazquez, F. & Font X. (2007). Effect of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions, Chemical Engineering Journal, 133, pp. 335-342.
  • [6]. Dwyer, J., Starreburg, D., Tait, S., Barr, K., Batstone, D.J. & Lant, P. (2008). Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability, Water Research, 42, pp. 4699-4709.
  • [7]. Escamilla-Alvarado, C., Rios-Leal, E., Ponce-Noyola, M.T. & Poggi-Varaldo, H.M. (2012). Gas biofuels from solid substrate hydrogenogenic-methanogenic fermentation of the organic fraction of municipal solid waste, Process Biochemistry, 47, pp. 1572-1587.
  • [8]. Grübel, K., Machnicka, A. & Wacławek, S. (2013). Impact of alkalization of surplus activated sludge on biogas production, Ecological Chemistry and Engineering S, 20, pp. 343-351.
  • [9]. Kalogo, Y. & Monteith, H. (2008). State of science report: Energy and resource recoverable from sludge, Global Water Research Coalition, UKWIR, WERF, STOWA.
  • [10]. Kim, J., Park, C., Kim, T-H., Lee, M., Kim, S., Kim, S-W. & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, Journal of Bioscience and Bioengineering, 95, pp. 271-275.
  • [11]. Kvesitadze, G., Sadunishvili, T., Dudauri, T., Zakariashvili, N., Partshaladze, G., Ugrekhelidze, V., Tsiklauri, G., Metreveli, B. & Jobavae, M. (2012). Two-stage anaerobic process for bio-hydrogen and biomethane combines production from biodegradable solid waste, Energy, 37, pp. 94-102.
  • [12]. Kopp, J. & Ewert, W. (2006). New Processes for the improvement of sludge digestion and sludge dewatering, Aqua Enviro/CIWEM 11th Biosolids and Organic Residuals Conference, Wakefield, UK. [http://www.cambi.no/photoalbum/view2/P3NpemU9b3JnJmlkPTIyMDAyMCZ0e-XBlPTE]
  • [13]. Lakshmi, M.V., Merrylin, J., Kavitha, S., Kumar, S.A., Banu, J.R. & Yeom, I-T. (2014). Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains, Environmental Science and Pollution Research, 21, pp. 2733-2743.
  • [14]. Lee, I. and Han, J.-I. (2013). The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production, Ultrasonics Sonochemistry, 20, pp. 1450-1455.
  • [15]. Li, H., Jin, Y., Mahar, R.B., Wang, Z. & Nie, Y. (2008). Effects and model of alkaline waste activated sludge treatment, Bioresource Technology, 99, pp. 5140-5144.
  • [16]. Li, H., Li, CH., Liu, W. & Zou, S.H. (2012). Opitimized alkaline pretreatment of sludge before anaerobic digestion, Bioresource Technology, 123, pp. 189-194
  • [17]. Li, H., Zou, S., Li, C. & Jin, Y. (2013). Alkaline post-treatment for improved sludge anaerobic digestion, Bioresource Technology, 140, pp. 187-191.
  • [18]. Lu, J., Gavala, H.N., Skiadas, I.V., Mladenovska, Z. & Ahrin, B.K. (2008). Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step, Journal of Environmental Management, 88, pp. 881-889.
  • [19]. Nasr, N., Elbeshbishy, E., Hafez, H., Nakhla, G., Hesham, E.L. & Naggar, M. (2012). Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage, Bioresource Technology, 111, pp. 122-126.
  • [20]. Penaud, V., Delgenes, J.P., Moletta, R., Colas, G., Vanhoutte, B. & Cans, P. (2000). Influence of thermo-chemical solubilization of a microbial biomass on solubilzation and biodegradability performance, Environmental Technology, 21, pp. 87-96.
  • [21]. Rafique, R., Poulsen, T.G., Nizamia, A-S., Asamc, Z-Z., Murphya, J.D. & Kielya, G. (2010). Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production, Energy, 35, pp. 4556-4561.
  • [22]. Rani, R.U., Kumar, S.A., Kaliappan, S. & Banu, J.R. (2012). Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge, Bioresource Technology, 126, pp. 107-116.
  • [23]. Sakiyama, T., Nanasaki, Y., Hagiwara, T. & Watanabe, H. (2011). Removability of bacterial spores from solid surfaces during cleaning. International Congress on Engineering and Food (ICEF), 22-26 Athens, Greece 2011.
  • [24]. Silva, M.P., Pereira, C.A., Junqueira, J.C. & Jorge, A.O.C. (2013). Methods of destroying bacterial spores, In: Microbial pathogens and strategies for combating them: science, technology and education, Méndez-Vilas A. (ed.), Formatex Research Center, 1, pp. 490-496.
  • [25]. Şahinkaya, S. & Sevimli, M.F. (2013). Effects and modelling of ultrasonic waste-activated sludge disintegration, Water and Environment Journal, 27, pp. 238-246.
  • [26]. Sambusiti, C., Monlau, F., Ficara, E., Carrère, H. & Malpei, F. (2013). A comparison of different pre-treatments to increase methane production from two agricultural substrates, Applied Energy, 104, pp. 62-70.
  • [27]. Siles, J.A., Brekelmans, J., Martin, M.A., Chica, A.F. & Martin, A. (2010). Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion, Bioresource Technology, 101, pp. 9040-9048.
  • [28]. Wang, X., Duan, X., Chen, J., Fang, K., Feng, L., Yan, Y. & Zhou, Q. (2016). Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids, Environmental Technology, 8, pp. 1-10.
  • [29]. Watcharapol, W. & Wichitsathian, B. (2014). Alkaline pretreatment of waste activated sludge in anaerobic digestion, Journal of Clean Energy Technologies, 2, pp. 118-121.
  • [30]. Zhang, Y, Zhang, P, Zhang, G, Ma, W, Wu, H. & Ma, B. (2012) Sewage sludge disintegration by combined treatment of alkaline plus high pressure homogenization, Bioresource Technology, 123, pp. 514-519.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d50fd25f-fbe5-4005-b562-1fb926bd7cbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.