PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Characterization of Three Selected Macrophytes – An Ecological Engineering Approach for Effective Rehabilitation of Rawapening Lake

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rawapening is one of Indonesia’s national priority lakes, which is experiencing environmental damage and urgently needs rehabilitation. The decline in water quality is caused by sedimentation and organic and inorganic waste that triggers eutrophication. Rehabilitation of Lake Rawapening is important to improve the health of freshwater resources. The ecological engineering approach is the most appropriate choice to rehabilitate these water conditions. The character of the macrophyte is the key factor for successful rehabilitation. Three macrophytes, Hydrilla verticillata (L. f.) Royle, Eichhornia crassipes (Mart.) Solms and Salvinia molesta D.Mitch., charactierized. Their characteristics, including growth rate, salt tolerance, dissolved oxygen production and consumption, nutritive value, and preferred food by herbivore fish were evaluated. The results indicated that H. verticillata has the highest growth rate, is the most tolerant to salinity change, produces more oxygen, has the highest nutritive value, and is the most preferred food for herbivore fish. H. verticilata is recommended as the best candidate to be used as a forcing function to drive the Rawapening lake into more economic and environmentally valuable for a resident. As the other two species also have high nutritive value, they can be recommended as a source of feed for animals as well. For better management, these two macrophytes required more often regular removal. Other economic and environmental values can also be achieved from E. crassipes and S. molesta.
Rocznik
Strony
277--287
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
  • Departement of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Prof. Jacob Rais Street, Tembalang Semarang, 50275, Central Java, Indonesia
  • Departement of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Prof. Jacob Rais Street, Tembalang Semarang, 50275, Central Java, Indonesia
  • School of Postgraduate Studies, Universitas Diponegoro, Imam Bardjo SH Street No. 5 Semarang, 50241, Central Java, Indonesia
  • Vocational School of Universitas Diponegoro, Prof. Sudarto Street, Tembalang, Kec. Tembalang, Semarang City, Central Java 50275, Indonesia
Bibliografia
  • 1. Akwuma, O.D., Ezra, A.G., Nayaya, A.J. 2021. Assessment of Emergent and Floating Macrophytes in Relation to Some Physicochemical Parameters of Waya Pond, Bauchi, Nigeria. Open Journal of Bioscience Research, 2(2), 66–73.
  • 2. Al-Abbawy, D.A., Al-Sweid, Z., Al-Saady, S.A.2020. Effects of salinity stress on biochemical and anatomical characteristics of Ceratophyllum demersum L. EurAsian Journal of BioSciences, 14, 5219–5225.
  • 3. Bergen, S.D., Bolton, S.M., Fridley, J.L. 2001. Design principles for ecological engineering. Ecological Engineering, 18(2), 201–210.
  • 4. Bianchini Jr, I., Cunha-Santino, M.B., Milan, J. A., Rodrigues, C. J., Dias, J.H. 2015. Model parameterization for the growth of three submerged aquatic macrophytes. J. Aquat. Plant Manage, 53, 64–73.
  • 5. Brüll, A., Van Bohemen, H., Costanza, R., Mitsch, W.J., van den Boomen, R., Chaudhuri, N., Schönborn, A. (2011). Benefits of ecological engineering practices. Procedia Environmental Sciences, 9, 16–20.
  • 6. Caraco, N., Cole, J., Findlay, S., Wigand, C. 2006. Vascular plants as engineers of oxygen in aquatic systems. BioScience, 56(3), 219–225.
  • 7. Cronin, G., Lodge, D.M., Hay, M.E., Miller, M., Hill, A.M., Horvath, T., Wahl, M. 2002. Crayfish feeding preferences for freshwater macrophytes: the influence of plant structure and chemistry. Journal of Crustacean Biology, 22(4), 708–718.
  • 8. Dale, G., Dotro, G., Srivastava, P., Austin, D., Hutchinson, S., Head, P. Schönborn, A. 2021. Education in ecological engineering – A need whose time has come. Circular Economy and Sustainability, 1(1), 333–373.
  • 9. Dey, C.J., Rego, A.I., Bradford, M.J., Clarke, K.D., McKercher, K., Mochnacz, N.J., Koops, M.A. 2021. Research priorities for the management of freshwater fish habitat in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 78(11), 1744–1754.
  • 10. Dhamayanti, R.R., Nursyam, H., Hariati A.M. 2016. Utilization of hydrilla verticillata fermented meal as alternative sources of protein in feed formulation for Tilapia (Oreochromis Sp.) Growth. International Journal of Scientific & Technology Research, 5(3), 34–35.
  • 11. Effendi, H., Utomo, A.A., Darmawangsa, G.M. 2017. Utilization of grass carp (Ctenopharyngodon idella) for inhibition of hyacinth (Eichhornia crassipes) population blooming. World Applied Sciences Journal, 35(2), 270–274.
  • 12. Freitas, A.D., Thomaz, S.M. 2011. Inorganic carbon shortage may limit the development of submerged macrophytes in habitats of the Paraná River basin. Acta Limnologica Brasiliensia, 23(1), 57–62.
  • 13. Goshu, G., Aynalem, S. 2017. Problem overview of the Lake Tana Basin. Social and Ecological System Dynamics. Springer, 9–23.
  • 14. Guezo, N.C., Fiogbe, E.D., Tobias, M.A.H.U.N.A.N. 2016. Evaluation of sodium chloride (NaCl) effects on water hyacinth Eichhornia crassipes development: Preliminary results. EWASH & TI Journal, 1, 34–40.
  • 15. Güereña, D. et al. 2015. Water hyacinth control in Lake Victoria: Transforming an ecological catastrophe into economic, social, and environmental benefits. Sustainable Production and Consumption, 3(March), 59–69.
  • 16. Gupta A.K., Yadav D. 2020. Biological Control Of Water Hyacinth. Environmental Contaminants Reviews, 3(1), 37–39.
  • 17. Haroon A.M. 2008. Nutrition value and factors affecting the energy and biochemical composition of some macrophytes from Lake Manzalah (Egypt). Egypt J. Aquat. Res, 34(4), 143–157.
  • 18. Herbert, E.R., Boon, P., Burgin, A.J., Neubauer, S.C., Franklin, R.B., Ardón, M., Gell, P. 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1–43.
  • 19. Henry-Silva, G.G., Camargo, A.F., Pezzato, M.M. 2008. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia, 610(1), 153–160.
  • 20. Kamau, A.N., Njogu, P., Kinyua, R., Sessay, M., 2015. Sustainability challenges and opportunities of generating biogas from water hyacinth in Ndunga Village, Kenya. Responsible natural resource economy program issue paper 005/2015. Retrieved from https://www.africaportal.org/documents/14234/Issue_paper_0052015.pdf
  • 21. Kordi, K.M.G.H. 2010. Budidaya papaya. Andi. Yogyakarta. Magomya, A.M., Kubmarawa, D., Ndahi, J.A., Yebpella, G.G. 2014. Determination of plant proteins via the Kjeldahl method and amino acid analysis: a comparative study. International Journal of Science & Technology Research, 3(4), 68–72.
  • 22. Koutika, L.S., Rainey, H.J. 2015. A review of the invasive, biological, and beneficial characteristics of aquatic species Eichhornia Crassipes and Salvinia molesta. Applied ecology and environmental research, 13(1), 85–97.
  • 23. Kumar, J.N., Soni, H., Kumar, R.N., Bhatt, I. 2008. Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turkish Journal of Fisheries and Aquatic Sciences, 8(2).
  • 24. Lach, L., Britton, D.K., Rundell, R.J., Cowie, R.H. 2000. Food preference and reproductive plasticity in an invasive freshwater snail. Biological invasions, 2(4), 279–288.
  • 25. Li, Q., Han, Y., Chen, K., Huang, X., Li, K., He, H. 2021. Effects of Water Depth on the Growth of the Submerged Macrophytes Vallisneria natans and Hydrilla verticillata: Implications for Water Level Management. Water, 13(18), 2590.
  • 26. Madsen, T.V., Cedergreen, N. 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient‐rich stream. Freshwater Biology, 47(2), 283–291.
  • 27. Matthews, N. 2016. People and fresh water ecosystems: pressures, responses, and resilience. Aquatic Procedia, 6, 99–105.
  • 28. Mironga, J.M., Mathooko, J.M., Onywere, S.M. 2012. Effect of water hyacinth infestation on the physicochemical characteristics of Lake Naivasha. International Journal of Humanities and Social Science, 2(7), 103–113.
  • 29. Mitsch, W.J. 2012. What is ecological engineering? Ecological Engineering, 45, 5–12.
  • 30. Mohd Izam, N.A., Azman, S.N., Jonit, E., Sallehoddin, S.M.H., Khairul, D.C., Zainul Abidin, M.K., Farinordin, F.A. 2021. Freshwater ecosystem: A short review of threats and mitigations in Malaysia. Gading Journal of Science and Technology, 4(1), 109–117.
  • 31. Munfarida, I., Auvaria, S.W., Suprayogi, D., Munir, M. 2020. Application of Salvinia molesta for water pollution treatment using phytoremediation batch system. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 493(1), 012002.
  • 32. Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651–681.
  • 33. National Medium-Term Development Plan (RPJMN). 2020. Government of the Republic of Indonesia
  • 34. Piranti, A., Waluyo, G., Rahayu, D.R. 2019. The possibility of using Lake Rawa Pening as a source of drinking water. Journal of Water and Land Development, 41(4–6), 111–119.
  • 35. Prasetyo, S., Anggoro, S., Soeprobowati, T.R. 2021. The Growth Rate of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) in Rawapening Lake, Central Java. Journal of Ecological Engineering, 22(6).
  • 36. Prasetyo, S., Anggoro, S., Soeprobowati, T.R. 2021. Potential of water hyacinth (Eichhornia crassipes (Mart.) Solms) in Rawapening lake as raw material for fish feed. Journal of Physics: Conference Series, 1943(2021), 012072. DOI: 10.1088/1742-6596/1943/1/012072
  • 37. Prasetyo, S., Anggoro, S., Soeprobowati, T.R. 2022. Water hyacinth Eichhornia crassipes (Mart) Solms management in Rawapening Lake, Central Java. AACL Bioflux, 15(1). http://www.bioflux.com.ro/aacl
  • 38. Rehman, F., Pervez, A., Khattak, B.N., Ahmad, R. 2017. Constructed wetlands: perspectives of the oxygen released in the rhizosphere of macrophytes. CLEAN–Soil, Air, Water, 45(1).
  • 39. Rout, N.P., Shaw, B.P. 2001. Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Science, 160(3), 415–423.
  • 40. Schönborn, A., Junge, R. 2021. Redefining ecological engineering in the context of circular economy and sustainable development. Circular Economy and Sustainability, 1(1), 375–394.
  • 41. Selvaraj, D., Velvizhi, G. 2021. Sustainable ecological engineering systems for the treatment of domestic wastewater using emerging, floating, and submerged macrophytes. Journal of Environmental Management, 286, 112253.
  • 42. Shearer, J.F., Grodowitz, M.J., Freedman, J.E. 2008. Nutritional characteristics of Hydrilla verticillata and its effect on two biological control agents. In: Proceedings of the XII International Symposium on Biological Control of Weeds. Wallingford: CAB International, 44–51.
  • 43. Soeprobowati, T.R. 2017. Lake Management: Lesson learns from rawapening lake. Advanced Science Letters, 23(7), 6495–6497.
  • 44. Soloviy, K., Malovanyy, M. 2019. Freshwater ecosystem macrophytes and microphytes: development, environmental problems, usage as raw material. Review. Environmental Problems, 3(4), 3, 115–124.
  • 45. Swe, T., Lombardo, P., Ballot, A., Thrane, J.E., Sample, J., Eriksen, T.E., Mjelde, M. 2021. The importance of aquatic macrophytes in a eutrophic tropical shallow lake. Limnologica, 90, 125910.
  • 46. Tootoonchi, M., Gettys, L.A. 2019. Testing salt stress on aquatic plants: effect of salt source and substrate. Aquatic Ecology, 53(3), 325–334.
  • 47. Vári, A., Podschun, S.A., Erős, T., Hein, T., Pataki, B., Iojă, I.C., Báldi, A. 2022. Freshwater systems and ecosystem services: challenges and chances for crossfertilization of disciplines. Ambio, 51(1), 135–151.
  • 48. Wahl, C.F., Diaz, R., Ortiz-Zayas, J. 2020. Assessing Salvinia molesta impact on environmental conditions in an urban lake: a case study of Lago Las Curias, Puerto Rico. Aquatic Invasions, 15(4).
  • 49. Wang, H., Ji, F., Qin, J., Zhou, Y. 2014. Submerged macrophyte restoration differentiation for a waterfront body. Journal of Clean Energy Technologies, 2(1).
  • 50. Wuryanta, A., Murtiono, U.H. 2018. Eutrophication and solving effort in lake rawapening, semarang district Central Java (A Spasial Approach). Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, 15(1).
  • 51. Yongo, E., Cishahayo, L., Mutethya, E., Alkamoi, B.M.A., Costa, K., Bosco, N.J. 2021. A review of the populations of tilapiine species in lakes Victoria and Naivasha, East Africa. African Journal of Aquatic Science, 46(3), 293–303.
  • 52. Yu, S., Miao, C., Song, H., Huang, Y., Chen, W., He, X. 2019. The efficiency of nitrogen and phosphorus removal by six macrophytes from eutrophic water. International journal of phytoremediation, 21(7), 643–651.
  • 53. Zhu, B., Wang, Z., Wang, T., Dong, Z. 2012. Nonpoint-source nitrogen and phosphorus loadings from a small watershed in the Three Gorges Reservoir area. Journal of Mountain Science, 9(1), 10–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d50f7270-5d20-413d-b548-46e76df58d61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.