PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Carrying Dimension of Occupation Measures for Self-Affine Random Fields

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hausdorff dimension results are a classical topic in the study of path properties of random fields. This article presents an alternative approach to Hausdorff dimension results for the sample functions of a large class of self-affine random fields. The aim is to demonstrate the following interesting relation to a series of articles by U. Zähle (1984, 1988, 1990, 1991). Under natural regularity assumptions, we prove that the Hausdorff dimension of the graph of self-affine fields coincides with the carrying dimension of the corresponding self-affine random occupation measure introduced by U. Zähle. As a remarkable consequence we obtain a general formula for the Hausdorff dimension given by means of the singular value function.
Rocznik
Strony
459--479
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
  • Mathematical Institute, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
  • Mathematical Institute, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
Bibliografia
  • [1] P. Becker-Kern, M. M. Meerschaert, and H.-P. Scheffler, Hausdorff dimension of operator stable sample paths, Monatsh. Math. 140 (2) (2003), pp. 91-101.
  • [2] D. A. Benson, M. M. Meerschaert, B. Bäumer, and H.-P. Scheffler, Aquifer operator scaling and the effect on solute mixing and dispersion, Water Resour. Res. 42 (1) (2006), pp. 1-18.
  • [3] S. Bianchi, A. Pantanella, and A. Pianese, Modeling stock prices by multifractional Brownian motion: An improved estimation of the pointwise regularity, Quant. Finance 13 (8) (2013), pp. 1317-1330.
  • [4] H. Biermé and C. Lacaux, Holder regularity for operator scaling stable random fields, Stochastic Process. Appl. 119 (7) (2009), pp. 2222-2248.
  • [5] H. Biermé and C. Lacaux, Linear multifractional multistable motion: LePage series representation and modulus of continuity, Ann. Univ. Buchar. Math. Ser. 4 (LXII) (1) (2013), pp. 345-360.
  • [6] H. Biermé, M. M. Meerschaert, and H.-P. Scheffler, Operator scaling stable random fields, Stochastic Process. Appl. 117 (3) (2007), pp. 312-332.
  • [7] R. M. Blumenthal and R. K. Getoor, A dimension theorem for sample functions of stable processes, Illinois J. Math. 4 (1960), pp. 370-375.
  • [8] J.-P. Chilès and P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, Wiley, New York 1999.
  • [9] C. D. Cutler, The Hausdorff dimension distribution of finite measures in Euclidean space, Canad. J. Math. 38 (6) (1986), pp. 1459-1484.
  • [10] S. Davies and P. Hall, Fractal analysis of surface roughness by using spatial data, J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 (1) (1999), pp. 3-37.
  • [11] S. Dereich, L. Döring, and A. E. Kyprianou, Real self-similar processes started from the origin, Ann. Probab. 45 (3) (2017), pp. 1952-2003.
  • [12] G. Didier, M. M. Meerschaert, and V. Pipiras, Exponents of operator self-similar random fields, J. Math. Anal. Appl. 448 (2) (2017), pp. 1450-1466.
  • [13] G. Didier and V. Pipiras, Integral representations and properties of operator fractional Brownian motions, Bernoulli 17 (1) (2011), pp. 1-33.
  • [14] G. Didier and V. Pipiras, Exponents, symmetry groups and classification of operator fractional Brownian motions, J. Theoret. Probab. 25 (2) (2012), pp. 353-395.
  • [15] G. A. Edgar, Integral, Probability, and Fractal Measures, Springer, New York 1998.
  • [16] W. Ehm, Sample function properties of multiparameter stable processes, Z. Wahrsch. Verw. Gebiete 56 (2) (1981), pp. 195-228.
  • [17] P. Embrechts and M. Maejima, Selfsimilar Processes, Princeton University Press, Princeton, NJ, 2002.
  • [18] K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (2) (1988), pp. 339-350.
  • [19] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester 1990.
  • [20] K. J. Falconer, The dimension of self-affine fractals. II, Math. Proc. Cambridge Philos. Soc. 111 (1) (1992), pp. 169-179.
  • [21] K. Falconer, Dimensions of self-affine sets: A survey, in: Further Developments in Fractals and Related Fields, J. Barral and S. Seuret (Eds.), Trends Math., Vol. 13, Birkhäuser, Basel 2013, pp. 115-134.
  • [22] R. Harba, G. Jacquet, R. Jennane, T. Lousoot, C. Benhamou, E. Lespesailles, and D. Tourliere, Determination of fractal scales on trabecular bone X-ray images, Fractals 2 (1994), pp. 422-438.
  • [23] Y. Hou, Hausdorff measure and packing measure of the graph of dilation-stable Lévy processes, J. Math. Anal. Appl. 390 (1) (2012), pp. 234-243.
  • [24] X. Hu and S. J. Taylor, Fractal properties of products and projections of measures in Rd, Math. Proc. Cambridge Philos. Soc. 115 (3) (1994), pp. 527-544.
  • [25] W. N. Hudson and J. D. Mason, Operator-self-similar processes in a finite-dimensional space, Trans. Amer. Math. Soc. 273 (1) (1982), pp. 281-297.
  • [26] O. Kallenberg, Random Measures, Akademie-Verlag, Berlin, and Academic Press, London-New York 1976.
  • [27] P. Kern, M. M. Meerschaert, and Y. Xiao, Asymptotic behavior of semistable Lévy exponents and applications to fractal path properties, J. Theoret. Probab. 31 (1) (2018), pp. 598-617.
  • [28] P. Kern and L. Wedrich, The Hausdorff dimension of operator semistable Lévy processes, J. Theoret. Probab. 27 (2) (2014), pp. 383-403.
  • [29] D. Khoshnevisan, Multiparameter Processes: An Introduction to Random Fields, Springer, New York 2002.
  • [30] R. G. Laha and V. K. Rohatgi, Operator self-similar stochastic processes in Rd, Stochastic Process. Appl. 12 (1) (1982), pp. 73-84.
  • [31] J. Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), pp. 62-78.
  • [32] J. Lévy Véhel, E. Lutton, and C. Tricot (Eds.), Fractals in Engineering: From Theory to Industrial Applications, Springer, New York 1997.
  • [33] Y. Li and Y. Xiao, Multivariate operator-self-similar random fields, Stochastic Process. Appl. 121 (6) (2011), pp. 1178-1200.
  • [34] L. Liu and Y. Xiao, Hausdorff dimension theorems for self-similar Markov processes, Probab. Math. Statist. 18 (2) (1998), pp. 369-383.
  • [35] M. Maejima and K. Sato, Semi-selfsimilar processes, J. Theoret. Probab. 12 (2) (1999), pp. 347-373.
  • [36] J. D. Mason and Y. Xiao, Sample path properties of operator-self-similar Gaussian random fields, Theory Probab. Appl. 46 (2002), pp. 58-78.
  • [37] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge University Press, Cambridge 1995.
  • [38] M. M. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, Wiley, New York 2001.
  • [39] M. M. Meerschaert and Y. Xiao, Dimension results for sample paths of operator stable Lévy processes, Stochastic Process. Appl. 115 (1) (2005), pp. 55-75.
  • [40] L. Ponson, D. Bonamy, H. Auradou, G. Mourot, S. Morel, E. Bouchaud, C. Guillot, and J. P. Hulin, Anisotropic self-affine properties of experimental fracture surfaces, Int. J. Fracture 140 (2006), pp. 27-37.
  • [41] W. E. Pruitt and S. J. Taylor, Sample path properties of processes with stable components, Z. Wahrsch. Verw. Gebiete 12 (1969), pp. 267-289.
  • [42] S. G. Roux, M. Clausel, B. Vedel, S. Jaffard, and P. Abry, Self-similar anisotropic texture analysis: The hyperbolic wavelet transform contribution, IEEE Trans. Image Process. 22 (11) (2013), pp. 4353-4363.
  • [43] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman & Hall, New York 1994.
  • [44] N. Shieh and Y. Xiao, Hausdorff and packing dimensions of the images of random fields, Bernoulli 16 (4) (2010), pp. 926-952.
  • [45] E. Sönmez, Fractal behavior of multivariate operator-self-similar stable random fields, Commun. Stoch. Anal. 11 (2) (2017), pp. 233-244.
  • [46] E. Sönmez, The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields, Stochastic Process. Appl. 128 (2) (2018), pp. 426-444.
  • [47] L. Wedrich, Hausdorff dimension of the graph of an operator semistable Lévy process, J. Fractal Geom. 4 (1) (2017), pp. 21-41.
  • [48] W. Willinger, V. Paxson, and M. S. Taqqu, Self-similarity and heavy tails: Structural modeling of network traffic, in: A Practical Guide to Heavy Tails: Statistical Techniques and Applications, R. J. Adler, R. E. Feldman, and M. S. Taqqu (Eds.), Birkhäuser, Boston 1998, pp. 27-53.
  • [49] Y. Xiao and H. Lin, Dimension properties of sample paths of self-similar processes, Acta Math. Sinica (N.S.) 10 (3) (1994), pp. 289-300.
  • [50] U. Zähle, Random fractals generated by random cutouts, Math. Nachr. 116 (1984), pp. 27-52.
  • [51] U. Zähle, Self-similar random measures. I. Notion, carrying Hausdorff dimension, and hyperbolic distribution, Probab. Theory Related Fields 80 (1) (1988), pp. 79-100.
  • [52] U. Zähle, Self-similar random measures. II. A generalization to self-affine measures, Math. Nachr. 146 (1990), pp. 85-98.
  • [53] U. Zähle, Self-similar random measures. III. Self-similar random processes, Math. Nachr. 151 (1991), pp. 121-148.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d50e7a34-d14f-43fb-87ca-fc80865bb37f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.