PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An influence of track stiffness discontinuity on pantograph base vibrations and catenary–pantograph dynamic interaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the computational methodology of the catenary–train–track system vibration analysis is presented and used to estimate the influence of vehicle body vibrations on the pantograph–catenary dynamic interaction. This issue is rarely referred in the literature, although any perturbations appearing at the pantograph–catenary interface are of great importance for high-speed railways. Vehicle body vibrations considered in this article are induced by the passage of train through the track stiffness discontinuity, being a frequent cause of significant dynamic effects. First, the most important assumptions of the computational model are presented, including the general idea of decomposing catenary–train–track dynamic system into two main subsystems and the concept of one-way coupling between them. Then, the pantograph base vibrations calculated for two train speeds (60 m/s, 100 m/s) and two cases of track discontinuity (a sudden increase and a sudden decrease in the stiffness of track substrate) are analyzed. Two cases of the railway vehicle suspension are considered – a typical two-stage suspension and a primary suspension alone. To evaluate catenary–pantograph dynamic interaction, the dynamic uplift of the contact wire at steady arm and the pantograph contact force is computed. It is demonstrated that an efficiency of the two-stage suspension grows with the train speed; hence, such vehicle suspension effectively suppresses strong sudden shocks of vehicle body, appearing while the train passes through the track stiffness discontinuity at a high speed. In a hypothetical case when the one-stage vehicle suspension is used, the pantograph base vibrations may increase the number of contact loss events at the catenary–pantograph interface.
Wydawca
Rocznik
Strony
111--124
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
autor
  • Department of Bridges and Railways, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Bridges and Railways, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Zhai, W., Wang, K., Cai, C. (2009). Fundamentals of vehicle–track coupled dynamics.Vehicle System Dynamics, 47(11), 1349-1376.
  • [2] Galvín, P., Romero, A., Domínguez, J. (2010). Vibrations induced by HST passage on ballast and non-ballast tracks. Soil Dynamics and Earthquake Engineering, 30, 862-873.
  • [3] Yang, X., Gu, S., Zhou, S., Yang, J., Zhou, Y., Lian, S. (2015). Effect of track irregularity on the dynamic response of a slab track under a high-speed train based on the composite track element method. Applied Acoustics, 99, 72-84.
  • [4] Cho, Y. H. (2008). Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper. Journal of Sound and Vibration, 315, 433-454.
  • [5] Cho, Y. H., Lee, K., Park Y., Kang, B., Kim, K. (2010). Influence of contact wire pre- sag on the dynamics of pantograph–railway catenary. International Journal of Mechanical Sciences, 52, 1471-1490.
  • [6] Massat, J-P., Laurent, C., Bianchi, J-P., Balmès, E. (2014). Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Vehicle System Dynamics, 52(Supplement), 338-354.
  • [7] Ambrósio, J., Pombo, J., Pereira, M., Antunes, P. and Mósca, A. (2012). Recent developments in pantograph-catenary nteraction modelling and analysis. Journal of Theoretical and Applied Mechanics, 1(1), 249-278.
  • [8] Ambrósio, J., Pombo, J., Pereira, M., Antunes, P., Mósca, A. (2012). A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high- speed trains. Journal of Theoretical and Applied Mechanics, 50(3), 681-699.
  • [9] Pombo, J., Antunes, P., Ambrósio, J. (2012). A study on multiple pantograph operations for high-speed catenary contact. In B. H. V. Topping (Ed.), Proceedings of the Eleventh International Conference on Computational Structures Technology (paper 139). Stirlingshire, Scotland: Civil-Comp Press.
  • [10] Poetsch G., Evans J., Meisinger R., Kortüm W., Baldauf W., Veitl A., Wallaschek J. (1997). Pantograph/catenary dynamics and control. Vehicle System Dynamics, 28, 159-195.
  • [11] Pombo, J., Ambrosio, J. (2013). Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains. Computers and Structures, 124, 88-101.
  • [12] Bryja, D., Popiołek (Hyliński), A. (2017). Analiza drgań wieszara cięgnowego jako modelu kolejowej sieci trakcyjnej obciążonej uchem pantografów. Journal of Civil Engineering, Environment and Architecture, 34(2), 177-190.
  • [13] Bryja, D., Prokopowicz, D. (2016). Dyskretno-ciągły model obliczeniowy sprzężonego układu dynamicznego: pantograf - napowietrzna sieć trakcyjna. Przegląd Komunikacyjny. 71(5), 44-51.
  • [14] Bryja, D., Hyliński, A. (2019). Droppers’ stiffness influence on dynamic interaction between the pantograph and railway catenary. Railway Reports, 63(183), 89-98.
  • [15] Bryja, D., Popiołek (Hyliński), A. (2018). Numeryczna symulacja drgań sieci trakcyjnych na liniach KDP, z uwzględnieniem nieliniowej pracy linek wieszakowych. In P. Kozioł, A. Szarata & W. Drozd (Eds.), Inżynieria kolejowa - szanse i wyzwania (pp. 55-76). Kraków, Poland: Wydawnictwo Politechniki Krakowskiej.
  • [16] CENELEC. (2002). EN 50318:2002 Railway applications – Current collection systems –Validation of simulation of the dynamic interaction between pantograph and overhead contact line. Brussels: Central Secretariat of European Committee for Electrotechnical Standardization.
  • [17] Bryja, D., Gisterek, I., Popiołek (Hyliński), A. (2015). Analiza numeryczna wpływu nierówności progowej na drgania toru kolejowego spowodowane przejazdem pociągu dużych prędkości. Inżynieria i Budownictwo, 71(10), 532-536.
  • [18] Bryja, D. Popiołek (Hyliński), A. (2015). Analiza drgań pojazdów kolejowych w trakcie ich przejazdu przez nierówność progową toru. Przegląd Komunikacyjny, 70(9), 68-72.
  • [19] Bryja, D., Popiołek (Hyliński), A. (2018). Drgania sieci trakcyjnej spowodowane przejazdem pociągu dużych prędkości przez nierówność progową toru kolejowego. Przegląd komunikacyjny, 73(6), 7-12.
  • [20] Benra, F. K., Dohmen, H. J., Pei, J., Schuster, S., & Wan, B. (2011). A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. Journal of Applied Mathematics, 2011, doi:10.1155/2011/853560.
  • [21] Esveld, C. (2014). Modern Railway Track. Zaltbommel: MRTProductions.
  • [22] Bryja, D., Gisterek, I., Popiołek (Hyliński), A. (2015). A computational method for acceleration analysis of a railway track with a stiffness discontinuity. In J. Kruis, Y. Tsompanakis & B.H.V. Topping (Eds.), Proc. of the Fifteenth Int. Conf. on Civil,Structural and Environmental Engineering Computing, Prague - Czech Republic, 1-4 September 2015, (pp. 1-13). Stirlingshire, Scotland: Civil-Comp Press.
  • [23] Bryja, D., Hołubowski, R., Gisterek, I. (2014). Railroad vehicle modelling in probabilistic vibration analysis of a railway bridge with randomly fluctuating track ballast stiffness. In A. Cunha et al (Eds.), Proc. of the Ninth European Conference on Structural Dynamics EURODYN 2014, Porto - Portugal, 30 June – 2 July, (pp. 2737-2744). Porto: Clássica, Artes Gráficas.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d507edcd-7bf0-48f0-9f2c-faf537128eeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.