Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A 20 gram batch weight of NiTi alloy, with a nominal equiatomic composition, was produced by mechanical alloying with milling times of 100, 120, and 140 hours. The differential scanning calorimetry was used to analyze the progress of the crystallization process. The X-ray diffraction examined the crystal structure of the alloy at individual crystallization stages. The observation of the powders microstructure and the chemical composition measurement were carried out using a scanning electron microscope equipped with an energy-dispersive detector. After the milling process, the alloy revealed an amorphous-nanocrystalline state. The course of the crystallization process was multi-stage and proceeded at a lower temperature than the pure amorphous state. The applied production parameters and the stage heat treatment allowed to obtain the alloy showing the reversible martensitic transformation with an enthalpy of almost 5 J/g.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1127--1135
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr.
Twórcy
autor
- University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1A Str., 41-500 Chorzów, Poland
autor
- University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1A Str., 41-500 Chorzów, Poland
Bibliografia
- [1] J. Frenzel, Z. Zhang, K. Neuking, G. Eggeler, J. Alloys Compd. 28, 214-223 (2004).
- [2] A. Foroozmehr, A. Kermanpur, F. Ashrafizadeh, Y. Kabiri, Mater. Sci. Eng. A, 528 (27), 7952-7955 (2011).
- [3] J. Otubo, O.D. Rigo, C.D. Neto, P.R. Mei, Mater. Sci. Eng. A, 438, 679-682 (2006).
- [4] M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber, R.F. Hamilton, Prog. Mater. Sci. 83, 630-663 (2016).
- [5] H. Kato, T. Koyari, S. Miura, K. Isonishi, M. Tokizane, Scr. Metall. Mate. 24 (12), 2335-2340 (1990).
- [6] S. Green, D. Grant N. Kelly, Powder Metall. 40, 43-47 (1997).
- [7] F. Neves, F.M. Braz Fernandes, I.M. Martins, J.B. Correia, M. Oliveira, E. Gaffet, N. Boucharat, M. Lattemann, J. Suffner, H. Hahn, Mater. Sci. Forum, 636-637, 928-933 (2010).
- [8] S.L. Zhu, X.J. Yang, D.H. Fu, L.Y. Zhang, C.Y. Li, Z.D. Cui, Mater. Sci. Eng. A, 408 (1-2), 264-268 (2005).
- [9] A. Biswas, Acta Mater. 53 (5), 1415-1425 (2005).
- [10] B. Yuan, X.P. Zhang, C.Y. Chung, M. Zhu, Mater. Sci. Eng. A, 438-440, 585-588 (2006).
- [11] M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, D. Stöver, Mater. Sci. Eng. A, 337 (1-2), 254-263 (2002).
- [12] S. Samal, O. Molnárová, F. Průša, J. Kopeček, L. Heller, P. Šittner, M. Škodová, L. Abate, I. Blanco, Appl. Sci. 11, 1802 (2021).
- [13] Y. Makifuchi, Y. Terunuma, M. Nagumo, Mater. Sci. Eng. A, 226-228, 312-316 (1997).
- [14] S.K. Sadrnezhaad, A.R. Selahi, Mater. Manuf. Processes 19 (3), 475-486 (2004).
- [15] W. Maziarz, J. Dutkiewicz, J. Van Humbeeck, T. Czeppe, Mater. Sci. Eng. A, 375-377, 844-848 (2004).
- [16] H.M. Rietveld, Acta Crystallogr. 22, 151-152 (1967).
- [17] T. Goryczka, P. Salwa, Arch. Metall. Mater. 64 (3), 1017-102 (2019).
- [18] T. Goryczka, P. Salwa, Metals 11, 1908 (2021).
- [19] E. Hellstern, H.J. Fecht, Z. Fu, W.L. Johnson, Mater. Res. 4, 1292-1295 (1989).
- [20] A.M. Vemula, G.C.M. Reddy, M.M. Hussain, Int. J. Mech. Eng. Technol. 8, 398-407 (2017).
- [21] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzac (Eds.), Binary Alloy Phase Diagrams, vol. 3, 2nd edn, ASM International, OH, (1990) p. 2875.
- [22] G. Eggeler, J. Khalil-Allafi, S. Gollerthan, C. Somsen, W.W. Schmahl, D. Sheptyakov, Smart Mater. Struct. 14, 186-191 (2005).
- [23] W. Tang, B. Sundman, R. Sandström, C. Qiu, Acta Mater. 47 (12), 3457-3468 (1999).
- [24] H. Morawiec, J. Ilczuk, D. Stróż, T. Goryczka, D. Chrobak, J. Phys. IV France 7, C5-155 (1997).
- [25] K. Madagopol, S. Banerjee, S. Lele, Acta Metall. Mater. 42, 1875-1885 (1944).
- [26] T. Goryczka, H. Morawiec, J. Alloys Compd. 367, 137-141 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d505534c-db12-48fe-8d67-b2d0ff3565ff