PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Anisotropy of soil shear strength parameters caused by the principal stress rotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Anizotropia parametrów wytrzymałościowych w gruntach spowodowana obrotem kierunków naprężeń głównych
Języki publikacji
EN
Abstrakty
EN
The paper presents the phenomenon of principal stress rotation in cohesive subsoil resulting from its loading or unloading and the impact of this phenomenon on the values of soil shear strength parameters: undrained shear strength τfu, effective cohesion c’, effective angle of internal friction φ’. For this purpose, tests in a triaxial apparatus and torsional shear hollow cylinder apparatus on selected undisturbed cohesive soils: sasiCl, saclSi, clSi, Cl, characterized by different index properties were carried out. Soil shear strength parameters were determined at angle of principal stress rotation α equal to 0° and 90° in tests in triaxial apparatus and α equal to 0°, 15°, 30°, 45°, 60°, 75°, 90° in tests in torsional shear hollow cylinder apparatus. The results of laboratory tests allow to assess the influence of the principal stress rotation on the shear strength parameters that should be used to determine the bearing capacity of the subsoil.
PL
W artykule przedstawiono wpływ obrotu kierunków naprężeń głównych na wartości parametrów wytrzymałościowych gruntów spoistych: wytrzymałość na ścinanie bez odpływu τfu, efektywną spójność c', efektywny kąt tarcia wewnętrznego φ’. W tym celu przeprowadzono badania w aparacie trójosiowym i w cylindrycznym aparacie skrętnym na wybranych gruntach spoistych o nienaruszonej strukturze: sasiCl, saclSi, clSi, Cl o różnych wartościach parametrów fizycznych. Badano grunty o współczynniku prekonsolidacji OCR w zakresie od 1.1 do 5.7, wskaźniku plastyczności Ip w zakresie od 10.0% do 83.8% oraz wskaźniku konsystencji Ic w zakresie od 0.14 do 1.16. Parametry wytrzymałościowe gruntów określono przy kątach obrotu kierunków naprężeń głównych α równych 0° i 90° w badaniach w aparacie trójosiowym i kątach α równych 0°, 15°, 30°, 45°, 60°, 75°, 90° w badaniach w cylindrycznym aparacie skrętnym. Wyniki badań laboratoryjnych pozwoliły ocenić wpływ obrotu kierunków naprężeń głównych na parametry wytrzymałościowe gruntów spoistych niezbędnych przy wyznaczaniu nośności podłoża.
Rocznik
Strony
163--187
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
  • Warsaw University of Life Sciences, Institute of Civil Engineering, Warsaw, Poland
Bibliografia
  • 1. R.J. Jardine, “One perspective of the pre-failure deformation characteristics of some geomaterials”, Pre-failure Deformation of Geomaterials, Proc. Sapporo. Balkema Rotterdam, 2, pp 855-885, 1995.
  • 2. D.W. Hight, A. Gens, M.J. Symes, “The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils”, Géotechnique 33, pp 335-383, 1983.
  • 3. H.P. Neher, M. Cudny, C.Wiltafsky, H.F. Schweiger, “Modelling principal stress rotation effects with multilaminate type constitutive models for clay”, Proc. of 8th International Symposium on Numerical Models in Geomechanics, Rome, pp 41-47, 2002.
  • 4. W.H. Ward, S.G. Samuels, M.E. Butler, “Further studies of the properties of the London Clay”, Géotechnique 9, pp 33-58, 1959.
  • 5. J.H. Atkinson, “Anisotropic elastic deformations in laboratory tests on undisturbed London Clay”, Géotechnique, pp 357-374, 1975.
  • 6. R.J. Jardine, C.O. Menkiti, “The undrained anisotropy of Ko consolidated sediments”. Proc. of 12th European Conference on Soil Mechanics and Geotechnical Engineering, Amsterdam, 2, pp 1101-1108, 1999.
  • 7. P.V. Lade, M.M. Kirkgard, “Effects of stress rotation and changes of b-values on cross-anisotropic behavior of natural Ko consolidated soft clay”, Soils and Foundations 40, pp 93-105, 2000.
  • 8. H. Lin, D. Penumadu, “Experimental investigation on principal stress rotation in Kaolin Clay”, Journal of Geotechnical and Geoenvironmental Engineering 131, pp 633-642, 2005.
  • 9. S. Nishimura, N.A. Minh, R.J. Jardine, “Shear strength anisotropy of natural London Clay”, Géotechnique 57, pp 49-62, 2007.
  • 10. T. Shogaki, N. Kumagai, “A slope stability analysis considering undrained strength anisotropy of natural clay deposits”, Soils and Foundations 48, pp 805-819, 2008.
  • 11. G. Wrzesiński, Z. Lechowicz, “Influence of the rotation of principal stress directions on undrained shear strength”, Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation 45, pp 183-192, 2013.
  • 12. K. Pawluk, G. Wrzesiński, M. Lendo-Siwicka, “Strength and numerical analysis in the design of permeable reactive barriers”, IOP Conference Series: Materials Science and Engineering 245, pp 1-8, 2017.
  • 13. R.J. Jardine, C.O. Menkiti, “The undrained anisotropy of Ko consolidated sediments”, Proc. of 12th European Conference on Soil Mechanics and Geotechnical Engineering, Amsterdam, 2, pp 1101-1108, 1999.
  • 14. J.R.F. Arthur, B.K. Menzies, “Inherent anisotropy in a sand”, Géotechnique 22, pp 115-128, 1972.
  • 15. J.R.F. Arthur, K.S. Chua, T. Dunstan, C.J.I. del Roderiguez, “Principal stress rotation: a missing parameter”, Journal of the Geotechnical Engineering Division 106, pp 419-433, 1980.
  • 16. H. Ohta, A. Nishihara, “Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions”, Soils and Foundations 25, pp 73-86, 1985.
  • 17. L. Bjerrum, A. Landva, “Direct simple-shear tests on a norvegian quick clay”, Géotechnique 16, pp 1-20, 1966.
  • 18. D.K. Wright, P.A. Gilbert, A.S. Saada, “Shear devices for determining dynamic soil properties”, Proc. Specialty Conference on Earthquake Engineering and Soil Dynamics, ASCE, 2, pp 1056-1075, 1978.
  • 19. W.H. Ward, S.G. Samuels, M.E. Butler, “Further studies of the properties of the London Clay”, Géotechnique 9, pp 33-58, 1959.
  • 20. J.H. Atkinson, “Anisotropic elastic deformations in laboratory tests on undisturbed London Clay”, Géotechnique 25, pp 357-374, 1975.
  • 21. T. Shogaki, N. Kumagai, “A slope stability analysis considering undrained strength anisotropy of natural clay deposits”, Soils and Foundations 48, pp 805-819, 2008.
  • 22. K. Miura, S. Miura, S. Toki, “Deformation behavior of anisotropic dense sand under principal stress axes rotation”, Soils and Foundations 26, pp 36-52, 1986.
  • 23. K. Ishihara, I. Towhata, “Sand response to cyclic rotation of principal stress directions as induced by wave loads”, Soils and Foundations 23, pp 11-26, 1983.
  • 24. S. Yamashita, S. Toki, “Effects of fabric anisotropy of sand on cyclic undrained triaxial and torsional strengths”, Soils and Foundations 33, pp 92-104, 1993.
  • 25. Y.P. Vaid, A. Eliadorani, S. Sivathayalan, R.M. Uthayakuma, “Laboratory characterization of stress-strain behavior of soils by stress and/or stress path loading”, Geotechnical Testing Journal 24, pp 200-208, 2001.
  • 26. Z.X. Yang, X.S. Li, J. Yang, “Undrained anisotropy and rotational shear in granular soil”, Géotechnique 57, pp 371-384, 2007.
  • 27. S.K. Chaudhary, J. Kuvano, Y. Hayano, “Measurement of quasi-elastic stiffness parameters of dense toyoura sand in hollow cylinder apparatus and triaxial apparatus with bender elements”, Geotechnical Testing Journal 27, pp 1-13, 2004.
  • 28. A.S. Saada, F.C. Townsend, “State of the Art: Laboratory strength testing of soils”, ASTM STP 740, pp 7-77, 1981.
  • 29. M. Jamiołkowski, C.C. Ladd, J.T. Germaine, R. Lancelotta, “New developments in field and laboratory testing of soils”, Proc. of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1, pp 57-153, 1985.
  • 30. EN ISO 14688-1, “Geotechnical investigation and testing - identification and classification of soil - Part 1: Identification and description”, International Organization for Standardization, Geneva, Switzerland, 2002.
  • 31. EN ISO 14688-2, “Geotechnical investigation and testing - identification and classification of soil - Part 2: Principles for a classification”, International Organization for Standardization, Geneva, Switzerland, 2004.
  • 32. A.W. Bishop, “The strength of soils as engineering materials”, Géotechnique 16, pp 91-130, 1966.
  • 33. G. Wrzesiński, Z. Lechowicz, “Testing of undrained shear strength in a hollow cylinder apparatus”, Studia Geotechnica et Mechanica 37, 69-73, 2015.
  • 34. G. Wrzesiński, “Stability analysis of an embankment with influence of principal stress rotation on the shear strength of subsoil”, Ph.D. Thesis, Warsaw University of Life Sciences, Poland, 2016.
  • 35. G. Wrzesiński, M. Sulewska, Z. Lechowicz, “Evaluation of the change in undrained shear strength in cohesive soils due to principal stress rotation using an artificial neural network”, Applied Sciences-Basel 8, pp 1-12, 2018.
  • 36. G. Wrzesiński, K. Pawluk, M. Lendo-Siwicka, A. Miszkowska, “Undrained shear strength anisotropy of cohesive soils caused by the principal stress rotation”, IOP Conference Series: Materials Science and Engineering 471, pp 1-8, 2019.
  • 37. F. Tavenas, “Some aspects of clay behavior and their consequences on modeling techniques”, Laboratory shear strength of soil. ASTM STP 740, pp 667-677, 1981.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d501c4e3-e3ea-4fc0-819e-2b429a110d28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.