PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and Assessment of Aluminum and Aluminum-Ceramic Foams Structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of the aluminum porous structure serving as a structural material used in the automotive or marine industry. The subject of the research is the analysis of the mechanical properties of the aluminum porous structure, in particular its ability to absorb energy. The paper presents a description of the manufacturing process, quality control in the form of a statistical capture of geometric parameters of the foam made, as well as an X-ray microanalysis of the chemical composition of EPMA-EDS and the dispersion of components within the structure. In addition, results of static axial compression analysis of aluminum and composite foam specimens are presented.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Maritime Technology and Transport, Piastów 41, 70-311 Szczecin, Poland
  • Poznan University of Technology, Institute of Materials Technology, Piotrowo 3, 61-138 Poznań, Poland
  • Maritime University of Szczecin, Faculty of Marine Engineering, 2–4 Willowa St., 71-650 Szczecin, Poland
Bibliografia
  • 1. Tarlochan F, Hamouda AMS, Mahdi E, Sahari BB (2007) Composite sandwich structures for crashworthiness applications. Proc Inst Mech Eng Part L J Mater Des Appl 221:121–130.
  • 2. Zhu F, Lu G, Ruan D, Wang Z (2010) Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores. Int J Prot Struct 1:507–541.
  • 3. Kaczyński P, Ptak M, Gawdzińska K (2020) Energy absorption of cast metal and composite foams tested in extremely low and high-temperatures. Mater Des. https://doi.org/10.1016/j.matdes.2020.109114.
  • 4. Kulshreshtha A, Dhakad SK (2020) Preparation of metal foam by different methods: A review. Mater Today Proc. https://doi.org/10.1016/j.mat-pr.2020.02.375.
  • 5. Czarnecka-Komorowska D, Grześkowiak K, Popielarski P, Barczewski M, Gawdzińska K, Popławski M (2020) Polyethylene Wax Modified by Organoclay Bentonite Used in the Lost-Wax Casting Process: Processing−Structure−Property Relationships. Materials (Basel) 13:2255
  • 6. Bejger A, Gawdzińska K (2011) Identification of Structural Defects of Metal Composite Castings with The Use of Elastic Waves. Arch Metall Mater. https://doi.org/10.2478/v10172–011–0014-z.
  • 7. Rogala M, Ferdynus M, Gawdzińska K, Kochmański P (2021) The Influence of Different Length Aluminum Foam Filling on Mechanical Behavior of a Square Thin-Walled Column. Materials (Basel) 14:3630.
  • 8. Macaulay M (1987) Introduction to Impact Engineering. Mater Des. https://doi.org/10.1007/ 978-94-009-3159-6.
  • 9. Kopczyński A, Rusiński E (2010) Passive safety. Energy absorption by thin-walled profiles. Publishing House of the Wrocław University of Technology, Wrocław.
  • 10. Pirmohammad S, Esmaeili Marzdashti S (2018) Crashworthiness optimization of combined straight-tapered tubes using genetic algorithm and neural networks. Thin-Walled Struct 127:318–332.
  • 11. Pang T, Zheng G, Fang J, Ruan D, Sun G (2019) Energy absorption mechanism of axially-varying thickness (AVT) multicell thin-walled structures under out-of-plane loading. Eng Struct 196:109130.
  • 12. Hanssen AG, Langseth M, Hopperstad OS (1999) Static crushing of square aluminium extrusions with aluminium foam filler. Int J Mech Sci 41:967–993.
  • 13. Hanssen AG, Langseth M, Hopperstad OS (2000) Static and dynamic crushing of square aluminum extrusions with aluminum foam filler. Int J Impact Eng 24:347–383.
  • 14. Ferdynus M, Rogala M (2019) Numerical Crush Analysis of Thin-Walled Aluminium Columns with Square Cross-Section and a Partial Foam Filling. Adv Sci Technol Res J 13:144–151.
  • 15. Kinzl M, Wolfram U, Pahr DH (2013) Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body. J Mech Behav Biomed Mater 26:136–147.
  • 16. Sika R, Rogalewicz M, Popielarski P, Czarnecka-Komorowska D, Przestacki D, Gawdzińska K, Szymański P (2020) Decision support system in the field of defects assessment in the metal matrix composites castings. Materials (Basel) 13:4–12.
  • 17. Dunaj P, Berczyński S, Chodźko M (2020) Method of modeling steel-polymer concrete frames for machine tools. Compos Struct 242:112197.
  • 18. Dunaj P, Berczyński S, Chodźko M, Niesterowicz B (2020) Finite Element Modeling of the Dynamic Properties of Composite Steel–Polymer Concrete Beams. Materials (Basel) 13:1630.
  • 19. Rogala M, Gajewski J, Ferdynus M (2020) The Effect of Geometrical Non-Linearity on the Crash-worthiness of Thin-Walled Conical Energy-Absorbers. Materials (Basel) 13:4857.
  • 20. Rogala M (2020) Neural Networks in Crashworthiness Analysis of Thin-Walled Profile with Foam Filling. Adv Sci Technol Res J 14:93–99.
  • 21. Szabelski J, Karpiński R, Krakowski P, Jonak J (2021) The impact of contaminating poly (Methyl methacrylate) (pmma) bone cements on their compressive strength. Materials (Basel) 14:0–9.
  • 22. Karpiński R, Jaworski, Łukasz, Jonak J, Krakowski P (2019) Stress distribution in the knee joint in relation to tibiofemoral angle using the finite element method. MATEC Web Conf 252:07007.
  • 23. Jonak J, Karpiński R, Wójcik A (2021) Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium–Part II. Materials (Basel) 14:3880.
  • 24. Lakes RS (1989) Cellular solids. J Biomech 22:397
  • 25. Hu D, Wang Y, Song B, Wang Y (2018) Energy absorption characteristics of a foam-filled tri-tube under axial quasi-static loading: experiment and numerical simulation. Int J Crashworthiness 23:417–432.
  • 26. Rogala M, Gajewski J (2021) Numerical analysis of porous materials subjected to oblique crushing force Numerical analysis of porous materials subjected to oblique crushing force. J Phys Conf Ser. https://doi.org/10.1088/1742–6596/1736/1/012025.
  • 27. Goldstein JI, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC (2018) Scanning Electron Microscopy and X-Ray Microanalysis. https://doi.org/10.1007/978–1-4939–6676–9.
  • 28. Saito K, Hangai Y, Utsunomiya T, Kuwazuru O, Kitahara S, Yoshikawa N (2013) Compression Properties of Al/Al-Mg-Si/Al-Si-Cu Alloy Three-Layered Functionally Graded Aluminum Foam. J Japan Inst Met Mater 77:430–434.
  • 29. Topin F, Bonnet J-P, Madani B, Tadrist L (2006) Experimental Analysis of Multiphase Flow in Metallic foam: Flow Laws, Heat Transfer and Convective Boiling. Adv Eng Mater 8:890–899.
  • 30. Jandaghi Shahi V, Marzbanrad J (2012) Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes. Thin-Walled Struct 60:24–37.
  • 31. Ling C, Ivens J, Cardiff P, Gilchrist MD (2018) Deformation response of EPS foam under combined compression-shear loading. Part I: Experimental design and quasi-static tests. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2018.06.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4faa05b-5797-486d-8128-49211e77f9eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.