PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative use of solid CO2 as an eco‑friendly additive in alkali‑activated concrete for enhancing its performance

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To date, carbon utilization within the concrete industry is predominantly revolved around gaseous and liquid carbon dioxide (CO 2 ), with relatively limited research dedicated to the application of solid CO 2 . This study was the first to use solid CO 2 (dry ice) as an additive in alkali-activated slag and fly ash (AASF) to investigate its influences on the alkali-activation process and various property improvements. Two study systems were designed: one with alkali-activated slag (AAS) as the control group and fly ash (FA) added at substitution rates of 10%, 30%, and 50%; and the other with 50% FA alkali-activated materials (AAM) as the control group and dry ice added at substitution rates of 4%, 8%, and 12%. Several tests were conducted on AASF, encompassing assessments of setting time, compressive strength, and durability (electrical resistivity and chloride ion diffusion coefficient). Furthermore, a comprehensive analysis of its microstructure was undertaken, employing analytical techniques, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The results showed that FA substitution effectively mitigated the short setting time of AAS; however, the mechanical properties and durability decreased by approximately 50%. When dry ice was added to AAM concrete, it induced a series of physical and chemical effects that altered the kinetics of the hydration reaction of AAM. Specifically, adding dry ice significantly prolonged the setting time of AAMs. Moreover, this addition did not damage the mechanical properties or durability of AAS(F).
Rocznik
Strony
art. no. e43, 2024
Opis fizyczny
Bibliogr. 45 poz., wykr.
Twórcy
autor
  • Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon-Si 24341, South Korea
autor
  • Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon-Si 24341, South Korea
autor
  • Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon-Si 24341, South Korea
  • Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon-Si 24341, South Korea
  • Department of Architectural Engineering, Kangwon National University, Chuncheon-Si 24341, South Korea
Bibliografia
  • 1. Sun B, Ye G, de Schutter G. A review: reaction mechanismand strength of slag and fly ash-based alkali-activated materials. Constr Build Mater. 2022;326:126843. https://doi.org/10.1016/j.conbuildmat.2022.126843.
  • 2. Provis JL. Alkali-activated materials. Cem Concr Res.2018;114:40–8. https://doi.org/10.1016/j.cemconres.2017.02.009.
  • 3. Alnahhal MF, Kim T, Hajimohammadi A. Waste-derived activators for alkali-activated materials: a review. Cem Concr Compos.2021;118:103980. https://doi.org/10.1016/j.cemconcomp.2021.103980.
  • 4. Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P,Illikainen M. One-part alkali-activated materials: a review. CemConcr Res. 2018;103:21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
  • 5. Scrivener KL, John VM, Gartner EM. Eco-efficient cements:potential economically viable solutions for a low-CO 2 cement-based materials industry. Cem Concr Res. 2018;114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
  • 6. Zhang J, Chen T, Gao X. Incorporation of self-ignited coal ganguein steam cured precast concrete. J Clean Prod. 2021;292:126004.https://doi.org/10.1016/j.jclepro.2021.126004.
  • 7. Duxson P, Provis JL. Designing precursors for geopolymer cements. J Am Ceram Soc. 2008;91(12):3864–9. https://doi.org/10.1111/j.1551-2916.2008.02787.x.
  • 8. Gislason SR, Oelkers EH. Mechanism, rates, and consequences ofbasaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature.Geochim Cosmochim Acta. 2003;67(20):3817–32. https://doi.org/10.1016/S0016-7037(03)00176-5.
  • 9. Collins FG, Sanjayan JG. Workability and mechanical propertiesof alkali activated slag concrete. Cem Concr Res. 1999;29(3):455–8. https://doi.org/10.1016/S0008-8846(98)00236-1.
  • 10. Aydın S, Baradan B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos B. 2014;57:166–72. https://doi.org/10.1016/j.compositesb.2013.10.001.
  • 11. Sun Y, Liu Z, Ghorbani S, Ye G, De Schutter G. Fresh and hard-ened properties of alkali-activated slag concrete: the effect of flyash as a supplementary precursor. J Clean Prod. 2022;370:133362.https://doi.org/10.1016/j.jclepro.2022.133362.
  • 12. Sun B, Sun Y, Ye G, De Schutter G. A mix design methodology of slag and fly ash-based alkali-activated paste. Cem Concr Compos.2022;126:104368. https://doi.org/10.1016/j.cemconcomp.2021.104368.
  • 13. Fang G, Zhang M. Multiscale micromechanical analysis of alkali-activated fly ash-slag paste. Cem Concr Res. 2020;135:106141.https://doi.org/10.1016/j.cemconres.2020.106141.
  • 14. Yang T, Zhu H, Zhang Z, Gao X, Zhang C, Wu Q. Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes. Cem Concr Res. 2018;109:198–207.https://doi.org/10.1016/j.cemconres.2018.04.008.
  • 15. Millman LR, Giancaspro JW. Environmental evaluation of abrasive blasting with sand, water, and dry ice. Int J Archit Eng Constr.2012;1(3):174–82. https://doi.org/10.7492/IJAEC.2012.019.
  • 16. Park ES, Lee TS. Research on improvement of system for automatic line stripe removal using dry ice blaster. KSCE J Civ Eng.2015;19:28–35. https://doi.org/10.1007/s12205-013-1287-8.
  • 17. Hikaru T, Minenori T, Masahiko K. Precooling method by meansof dry ice as a cooling media. J Jpn Soc Dam Eng. 1993;3(9):41–50. https://doi.org/10.11315/jsde1991.3.41. (in Japanese).
  • 18. Hikaru T, Yukikazu T. Fundamental research on precooling method by means of dry ice. J JSCE. 1996;1996(54):53–64.https://doi.org/10.2208/jscej.1996.544_53. (in Japanese).
  • 19. Wang Y, He F, Yang L. Influence of dry ice on the performance of Portland cement and its mechanism. Constr Build Mater.2018;188:898–904. https://doi.org/10.1016/j.conbuildmat.2018.08.109.
  • 20. Sun Z, Vollpracht A. Isothermal calorimetry and in-situ XRDstudy of the NaOH activated fly ash, metakaolin and slag. CemConcr Res. 2018;103:110–22. https://doi.org/10.1016/j.cemconres.2017.10.004.
  • 21. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, vanDeventer JS. Modification of phase evolution in alkali-activatedblast furnace slag by the incorporation of fly ash. Cem Concr Compos. 2014;45:125–35. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
  • 22. Luo Y, Li SH, Klima KM, Brouwers HJH, Yu Q. Degradation mechanism of hybrid fly ash/slag based geopolymers exposed toelevated temperatures. Cem Concr Res. 2022;151:106649. https://doi.org/10.1016/j.cemconres.2021.106649.
  • 23. Oh BH, Jang SY. Prediction of diffusivity of concrete based on simple analytic equations. Cem Concr Res. 2004;34(3):463–80.https://doi.org/10.1016/j.cemconres.2003.08.026.
  • 24. Teng S, Lim TYD, Sabet-Divsholi B. Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag. Constr Build Mater.2013;40:875–81. https://doi.org/10.1016/j.conbuildmat.2012.11.052.
  • 25. Aiken TA, Kwasny J, Sha W, Tong KT. Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content. Constr Build Mater. 2021;301:124330. https://doi.org/10.1016/j.conbuildmat.2021.124330.
  • 26. Han Y, Lin R, Wang X-Y. Sustainable mixtures using waste oyster shell powder and slag instead of cement: performance and multi-objective optimization design. Constr Build Mater.2022;348:128642. https://doi.org/10.1016/j.conbuildmat.2022.128642.
  • 27. Han Y, Lin R, Wang X-Y. Preparation of nano calcite by the carbon capture technology to improve the performance of ultra high-performance concrete containing calcined clay. ACS Sustain Chem Eng. 2023;11(12):4531–42. https://doi.org/10.1021/acssuschemeng.2c04477.
  • 28. Gu Y-M, Fang Y-H, You D, Gong Y-F, Zhu C-H. Properties and microstructure of alkali-activated slag cement cured at below-and about-normal temperature. Constr Build Mater. 2015;79:1–8.https://doi.org/10.1016/j.conbuildmat.2014.12.068.
  • 29. Gao X, Yu QL, Brouwers HJH. Reaction kinetics, gel characterand strength of ambient temperature cured alkali activated slag–fly ash blends. Constr Build Mater. 2015;80:105–15. https://doi.org/10.1016/j.conbuildmat.2015.01.065.
  • 30. Li N, Shi C, Zhang Z. Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Compos B Eng. 2019;171:34–45. https:// doi. org/ 10.1016/j.compositesb.2019.04.024.
  • 31. Bernal SA, Nicolas RS, van Deventer JS, Provis JL. Alkali-acti-vated slag cements produced with a blended sodium carbonate/sodium silicate activator. Adv Cem Res. 2016;28(4):262–73.https://doi.org/10.1680/jadcr.15.00013.
  • 32. Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM. The evolution of strength and crystal line phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res.2010;40(2):189–96. https://doi.org/10.1016/j.cemconres.2009.10.010.
  • 33. Chi M, Huang R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater. 2013;40:291–8. https://doi.org/10.1016/j.conbuildmat.2012.11.003.
  • 34. Kovtun M, Kearsley EP, Shekhovtsova J. Chemical accelerationof a neutral granulated blast-furnace slag activated by sodium carbonate. Cem Concr Res. 2015;72:1–9. https://doi.org/10.1016/j.cemconres.2015.02.014.
  • 35. Jiao Z, Wang Y, Zheng W, Huang W. Effect of dosage of sodium carbonate on the strength and drying shrinkage of sodium hydroxide based alkali-activated slag paste. Constr Build Mater.2018;179:11–24. https://doi.org/10.1016/j.conbuildmat.2018.05.194.
  • 36. Hornbostel K, Larsen CK, Geiker MR. Relationship betweenconcrete resistivity and corrosion rate—a literature review. Cem Concr Compos. 2013;39:60–72. https://doi.org/10.1016/j.cemconcomp.2013.03.019.
  • 37. Tian Z, Ye H. Electrical resistivity of partially-saturated alkali-activated slag containing sodium nitrite admixture. Cem ConcrCompos. 2021;120:104053. https:// doi. org/ 10. 1016/j. cemconcomp.2021.104053.
  • 38. Qu ZY, Yu QL, Brouwers HJH. Relationship between the particlesize and dosage of LDHs and concrete resistance against chloride ingress. Cem Concr Res. 2018;105:81–90. https://doi.org/10.1016/j.cemconres.2018.01.005.
  • 39. Noushini A, Castel A, Aldred J, Rawal A. Chloride diffusionresistance and chloride binding capacity of fly ash-based geopolymer concrete. Cem Concr Compos. 2020;105:103290. https://doi.org/10.1016/j.cemconcomp.2019.04.006.
  • 40. Ye H, Radlińska A. Shrinkage mitigation strategies in alkali-activated slag. Cem Concr Res. 2017;101:131–43. https://doi.org/10.1016/j.cemconres.2017.08.025.
  • 41. Li Z, Lu T, Liang X, Dong H, Ye G. Mechanisms of autogenousshrinkage of alkali-activated slag and fly ash pastes. Cem ConcrRes. 2020;135:106107. https://doi.org/10.1016/j.cemconres.2020.106107.
  • 42. Han Y, Oh S, Wang XY, Lin RS. Hydration-strength-workability-durability of binary, ternary, and quaternary composite pastes.Materials (Basel). 2021;15(1):204. https://doi.org/10.3390/ma15010204.
  • 43. Reig FB, Adelantado JG, Moreno MM. FTIR quantitative analysisof calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta. 2002;58(4):811–21. https://doi.org/10.1016/S0039-9140(02)00372-7.
  • 44. Jun Y, Han SH, Shin TY, Kim JH. Effects of CO(2) curing on alkali-activated slag paste cured in different curing conditions.Materials (Basel). 2019;12(21):3513. https:// doi. org/ 10. 3390/ma12213513.
  • 45. Han Y, Lin R, Wang X-Y. Carbon conversion technology for performance improvement and environmental benefits of ultra-high-performance concrete containing slag. J Mater Res Technol.2022;21:2571–83. https://doi.org/10.1016/j.jmrt.2022.10.075.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4f60c2b-1ada-444b-922e-94a09c5228ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.