PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of Surface Topography During Turning of AISI 1045 Steel Considering the Type of Cutting Edge Coating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents evaluation of the surface topography obtained after turning of AISI 1045 steel with the use of cemented carbide tools diversified in terms of applied titanium-based coatings. During the research, three types of coatings deposited with the PVD method on a P25 sintered carbide insert were compared: nitride-titanium TiN, nitride-aluminum-titanium TiAlN and carbon-titanium TiC in a wide range of variable cutting speeds 125 - 325 m/min and variable feeds 0.05 - 0.25 mm/rev. The quality of the machined surface was assessed on the Sensofar S neox System optical profile meter using the confocal method. The paper presents the results of 3D parameters, contour maps, isometric views and material ratio curves. The surface topography analysis showed that for the TiAlN coated insert, lower surface roughness parameters were observed in the range of lower cutting speeds and higher feeds, while for higher cutting speeds, lower values of the selected 3D parameters were found for the insert with TiC coating. For the insert with TiC coating, the most even distribution of the valleys and ridges of the machined surface roughness was also observed. The research results determined the range of cutting parameters that allow the selection of the appropriate type of titanium-based coating when machining AISI 1045 steel.
Twórcy
  • Faculty of Mechanical Engineering, University of Zielona Góra, 4 Prof. Z. Szafrana Street, 65-516 Zielona Góra, Poland
  • Faculty of Mechanical Engineering, University of Zielona Góra, 4 Prof. Z. Szafrana Street, 65-516 Zielona Góra, Poland
  • Faculty of Mechanical Engineering, University of Zielona Góra, 4 Prof. Z. Szafrana Street, 65-516 Zielona Góra, Poland
  • Faculty of Mechanical Engineering, University of Zielona Góra, 4 Prof. Z. Szafrana Street, 65-516 Zielona Góra, Poland
  • Faculty of Mechanical Engineering and Management, Poznan University of Technology, 3 Piotrowo St., 60-965 Poznań, Poland
  • Advanced Manufacturing Laboratory, Institute of Infrastructure Technology, Research and Management, Ahmedabad, India
  • Faculty of Mechanical Engineering, Opole University of Technology, 76 Proszkowska St., 45-758 Opole, Poland
Bibliografia
  • 1. Gupta K.M., Ramdev K., Dharmateja S., Sivarajan S. Cutting Characteristics of PVD Coated Cutting Tools. Materials Today: Proceedings. 2018; 5(5): 11260–11267.
  • 2. Inspektor A., Salvador P.A. Architecture of PVD coatings for metalcutting applications: A review. Surface and Coatings Technology. 2014; 257: 138–153.
  • 3. Thakur A., Gangopadhyay S. Influence of tribological properties on the performance of uncoated, CVD and PVD coated tools in machining of Incoloy 825. Tribology International. 2016; 102: 198–212.
  • 4. Macek W., Marciniak Z., Branco R., Rozumek D., Królczyk G.M. A fractographic study exploring the fracture surface topography of S355J2 steel after pseudo-random bending-torsion fatigue tests. Measurement: Journal of the International Measurement Confederation. 2021; 178: 109443.
  • 5. Bag R., Panda A., Sahoo A.K., Kumar R. Cutting tools characteristics and coating depositions for hard part turning of AISI 4340 martensitic steel: A review study. Materials Today: Proceedings. 2019; 26: 2073–2078.
  • 6. Biermann D., Iovkov I. Modelling, simulation and compensation of thermal effects for complex machining processes: The priority programme 1480 “CutSim.” Production Engineering. 2015; 9(4): 433–435.
  • 7. Liu W., Li A., Wu H., He R., Huang J., Long Y., et al. Effects of bias voltage on microstructure, mechanical properties, and wear mechanism of novel quaternary (Ti, Al, Zr)N coating on the surface of silicon nitride ceramic cutting tool. Ceramics International. 2016; 42(15): 17693–17697.
  • 8. Tu G., Wu S., Liu J., Long Y., Wang B. Cutting performance and wear mechanisms of Sialon ceramic cutting tools at high speed dry turning of gray castiron. International Journal of Refractory Metals and Hard Materials. 2016; 54: 330–334.
  • 9. Jackson M.J., Morrell J.S. Machining with Nanomaterials. Springer-Verlag US; 2009.
  • 10. Kivak T. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement: Journal of the International Measurement Confederation. 2014; 50(1): 19–28.
  • 11. Sousa V.F.C., Silva F.J.G., Alexandre R., Fecheira J.S., Silva F.P.N. Study of the wear behaviour of TiAlSiN and TiAlN PVD coated tools on milling operations of pre-hardened tool steel. Wear. 2021; 476: 203695.
  • 12. Kumar C.S., Patel S.K. Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surface and Coatings Technology. 2018; 334: 509–525.
  • 13. Zhao J., Liu Z., Wang B., Hu J. PVD AlTiN coating effects on tool-chip heat partition coefficient and cutting temperature rise in orthogonal cutting Inconel 718. International Journal of Heat and Mass Transfer. 2020; 163: 120449.
  • 14. Neves D., Diniz A.E., Lima M.S.F. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating. Applied Surface Science. 2013; 282: 680–688.
  • 15. Mkaddem A., Ben Soussia A., El Mansori M. Wear resistance of CVD and PVD multilayer coatings when dry cutting fiber reinforced polymers (FRP). Wear. 2013; 302(1–2): 946–954.
  • 16. Koyilada B., Gangopadhyay S., Thakur A. Comparative evaluation of machinability characteristics of Nimonic C-263 using CVD and PVD coated tools. Measurement: Journal of the International Measurement Confederation. 2016; 85: 152–163.
  • 17. Boing D., de Oliveira A.J., Schroeter R.B. Evaluation of wear mechanisms of PVD and CVD coatings deposited on cemented carbide substrates applied to hard turning. International Journal of Advanced Manufacturing Technology. 2020; 106(11–12): 5441–5451.
  • 18. García J., Collado Ciprés V., Blomqvist A., Kaplan B. Cemented carbide microstructures: a review. International Journal of Refractory Metals and Hard Materials. 2019; 80: 40–68.
  • 19. Ginting A., Skein R., Cuaca D., Herdianto, Pieter, Masyithah Z. The characteristics of CVD- and PVD-coated carbide tools in hard turning of AISI 4340. Measurement: Journal of the International Measurement Confederation. 2018; 129: 548–557.
  • 20. Bobzin K. High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology. 2017; 18: 1–9.
  • 21. Naskar A., Chattopadhyay A.K. Investigation on flank wear mechanism of CVD and PVD hard coatings in high speed dry turning of low and high carbon steel. Wear. 2018; 396–397: 98–106.
  • 22. He Q., Paiva J.M., Kohlscheen J., Beake B.D., Veldhuis S.C. An integrative approach to coating/
  • carbide substrate design of CVD and PVD coated cutting tools during the machining of austenitic stainless steel. Ceramics International. 2020; 46(4): 5149–5158.
  • 23. El Azhari I., García J., Soldera F., Suarez S., Jiménez-Piqué E., Mücklich F., et al. Contact damage investigation of CVD carbonitride hard coatings deposited on cemented carbides. International Journal of Refractory Metals and Hard Materials. 2020; 86: 105050.
  • 24. Deng Y., Chen W., Li B., Wang C., Kuang T., Li Y. Physical vapor deposition technology for coated cutting tools: A review. Ceramics International. 2020; 46(11): 18373–18390.
  • 25. Chinchanikar S., Choudhury S.K. Wear behaviors of single-layer and multi-layer coated carbide inserts in high speed machining of hardened AISI 4340 steel. Journal of Mechanical Science and Technology. 2013; 27(5): 1451–1459.
  • 26. Das S., Guha S., Ghadai R., Swain B.P. A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Materials Chemistry and Physics. 2021; 258: 123866.
  • 27. Qiu L., Du Y., Wu L., Wang S., Zhu J., Cheng W., et al. Microstructure, mechanical properties and cutting performances of TiSiCN super-hard nanocomposite coatings deposited using CVD method under the guidance of thermodynamic calculations. Surface and Coatings Technology. 2019; 378: 124956.
  • 28. Holzschuh H. Chemical-vapor deposition of wear resistant hard coatings in the Ti-B-C-N system: Properties and metal-cutting tests. International Journal of Refractory Metals and Hard Materials. 2002; 20(2): 143-149.
  • 29. Randhawa H. Cathodic arc plasma deposition of TiC and TiCxN1-x films. Thin Solid Films. 1987; 153(1): 209-218.
  • 30. Das S., Guha S., Das P.P., Ghadai R.K. Analysis of morphological, microstructural, electrochemical and nano mechanical characteristics of TiCN coatings prepared under N2 gas flow rate by chemical vapour deposition (CVD) process at higher temperature. Ceramics International. 2020; 46(8): 10292–10298.
  • 31. Knotek O., Löffler F., Krämer G. Deposition, properties and performance behaviour of carbide and carbonitride PVD coatings. Surface and Coatings Technology. 1993; 61(1–3): 320-325.
  • 32. Martini C., Morri A. Face milling of the en AB-43300 aluminum alloy by PVD- and CVD-coated cemented carbide inserts. International Journal of Refractory Metals and Hard Materials. 2011; 29(6): 662–673.
  • 33. Rubshtein A.P., Vladimirov A.B., Korkh Y.V., Ponosov Y.S., Plotnikov S.A. The composition, structure and surface properties of the titanium-carbon coatings prepared by PVD technique. Surface and Coatings Technology. 2017; 309: 680–686.
  • 34. Çelik Y.H., Kilickap E., Güney M. Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017; 39(6): 2085–2093.
  • 35. Özkan D., Alper Yılmaz M., Szala M., Türküz C., Chocyk D., Tunç C., et al. Effects of ceramic-based
  • CrN, TiN, and AlCrN interlayers on wear and friction behaviors of AlTiSiN+TiSiN PVD coatings. Ceramics International. 2021; 47(14): 20077–20089.
  • 36. Vetri Velmurugan K., Venkatesan K. Experimental investigation and comparative assessment of PVD and CVD insert on dry machining of waspaloy. Materials Today: Proceedings. 2021.
  • 37. Martinho R.P., Silva F.J.G., Martins C., Lopes H. Comparative study of PVD and CVD cutting tools performance in milling of duplex stainless steel. International Journal of Advanced Manufacturing Technology. 2019; 102(5–8): 2423–2439.
  • 38. Fernández-Abia A.I., Barreiro J., Fernández-Larrinoa J., López de Lacalle L.N., Fernández-Valdivielso A., Pereira O.M. Behaviour of PVD coatings in the turning of austenitic stainless steels. Procedia Engineering. 2013; 63: 133–141.
  • 39. Liu W., Chu Q., Zeng J., He R., Wu H., Wu Z., et al. PVD-CrAlN and TiAlN coated Si3N4 ceramic cutting inserts-2. High speed face milling performance and wear mechanism study. Ceramics International. 2017; 43(12): 9488–9492.
  • 40. Nadolny K., Kapłonek W. Analysis of flatness deviations for austenitic stainless steel workpieces after efficient surface machining. Measurement Science Review. 2014;14(4):204–212.
  • 41. Karlsson L., Hultman L., Johansson M.P., Sundgren J.E., Ljungcrantz H. Growth, microstructure, and mechanical properties of arc evaporated TiCxN1-x (0≤x≤1) films. Surface and Coatings Technology. 2000; 126(1): 1–14.
  • 42. Bouzakis K.D., Michailidis N., Skordaris G., Bouzakis E., Biermann D., M’Saoubi R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Annals - Manufacturing Technology. 2012; 61(2): 703–723.
  • 43. Twardowski P., Wojciechowski S., Wieczorowski M., Mathia T. Surface roughness analysis of hardened steel after high-speed milling. Scanning. 2011; 33(5): 386–395.
  • 44. Das S., Ghadai R., Guha S., Sharma A., Swain B.P. Correlation of Microstructural and Mechanical Properties of CVD Deposited TiAlN Coatings. Arabian Journal for Science and Engineering. 2020; 45(2): 967–975.
  • 45. Shang H., Li J., Shao T. Mechanical properties and thermal stability of TiN/Ta multilayer film deposited by ion beam assisted deposition. Advances in Materials Science and Engineering. 2014; (1-2): 1-8.
  • 46. Endler I., Höhn M., Herrmann M., Holzschuh H.,Pitonak R., Ruppi S., et al. Aluminum-rich TiAlCN coatings by Low Pressure CVD. Surface and Coatings Technology. 2010; 205(5): 1307–1312.
  • 47. Królczyk G.M. Morfologia powierzchni stali duplex po procesie toczenia na sucho i z chłodzeniem. Opole: Oficyna Wydawnicza Politechniki Opolskiej; 2015.
  • 48. Ramesh S., Karunamoorthy L., Palanikumar K. Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). Measurement: Journal of the International Measurement Confederation. 2012; 45(5): 1266–1276.
  • 49. Horng J.T., Liu N.M., Chiang K.T. Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology. Journal of Materials Processing Technology. 2008; 208(1–3): 532–541.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4f390c6-1635-4a54-8f22-bb605a63613c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.