PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Optimal Power Point Tracking Algorithm in a Solar PV Generation System

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Algorytm śledzenia optymalnego punktu mocy maksymalnej w systemach fotowoltaicznych
Języki publikacji
EN PL
Abstrakty
EN
The non-linearity in I-V characteristics of a PV panel requires to be operated at knee point to extract maximum power. In order to operate the panel at optimal point, maximum power point tracking (MPPT) algorithm is employed in the control structure. The main objective of MPP tracking is to keep the operation at knee point of I-V characteristics under varying condition of temperature and solar insolation. Under non uniform solar PV insolation falling on PV panels connected in series, a partial shading condition (PSC) occurs under cloud or shadow effects causes multiple power peak formation. The conventional MPPT methods fail to converge at global maximum power point (GMPP) under the PSC condition. Occurrence of these multiple peaks on characteristics of P-V makes tracking very difficult and requires integration of an efficient algorithm that differentiates between global and local maximum power point. This paper proposes a variable structure constant voltage method to overcome the problem faced by conventional MPPT methods. Moreover, quadratic boost converter has been taken for MPPT operation for increasing the effective gain of the converter. The effective operation of control algorithm has been validated in simulation results.
PL
Na skutek nieliniowości charakterystyk I-U panelu fotowoltaicznego jego maksymalną moc uzyskuje się, gdy pracuje on w punkcie przegięcia. Aby panel pracował w optymalnym punkcie, w strukturze sterowania należy zastosować algorytm śledzenia punktu mocy maksymalnej (ang. maximum power point tracking – MPPT). Głównym celem śledzenia MPP jest utrzymanie działania panelu PV w punkcie przegięcia charakterystyki I(U) (w tzw. kolanie) niezależnie od zmian temperatury i nasłonecznienia. Pod wpływem częściowego zacienienia paneli fotowoltaicznych połączonych szeregowo (ang. partial shading conditio – PSC), np. z powodu zachmurzenia, na charakterystyce I(U) powstaje kilka punktów przegięcia. Konwencjonalne metody MPPT nie prowadzą do zbież- ności w globalnym punkcie mocy maksymalnej (ang. global maximum power point – GMPP) w warunkach PSC. Występowanie kilku szczytów na charakterystyce P(U) bardzo utrudnia śledzenie optymalnego punktu pracy i wymaga użycia takiego algorytmu sterowania, który rozróżnia globalne i lokalne punkty mocy maksymalnej. W celu rozwiązania tego zagadnienia zaproponowano w artykule układ regulacji o stałym napięciu i zmiennej strukturze sterowania. Aby zwiększyć wzmocnienie napięciowe układu energoelektronicznego, zastosowano podwójny przekształtnik podwyższający napięcie. Skuteczne działanie algorytmu sterowania zostało potwierdzone wynikami symulacji.
Wydawca
Czasopismo
Rocznik
Tom
Strony
21--32
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Aligarh Muslim University, Aligarh, India
  • Aligarh Muslim University, Aligarh, India
autor
  • Aligarh Muslim University, Aligarh, India
autor
  • Qatar University
autor
  • Aligarh Muslim University, Aligarh, India
  • Politechnika Gdańska, Wydział Elektrotechniki i Automatyki
Bibliografia
  • 1. Silvestre S., Boronat A., Chouder A., Study of bypass diodes configuration on PV modules, Applied Energy, Vol. 86(9), 2009, pp. 1632–1640, doi: 10.1016/j.apenergy.2009.01.020.
  • 2. Zheng H. et al., Shading and bypass diode impacts to energy extraction of PV arrays under different converter configurations, Renewable Energy, Vol. 68, 2014, pp. 58–66, doi: 10.1016/j.renene.2014.01.025.
  • 3. Seyedmahmoudian M. et al., State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review, Renewable and Sustainable Energy Reviews, Vol. 64, 2016, pp. 435–55. doi: 10.1016/j.rser.2016.06.053.
  • 4. Fan X., Deng F., Chen J., Voltage band analysis for maximum power point tracking of stand-alone PV systems, Solar Energy, Vol. 144, 2017, pp. 221–31, doi: 10.1016/j.solener.2017.01.032.
  • 5. Gokmen N. et al., Voltage band based global MPPT controller for photovoltaic systems, Solar Energy, Vol. 98, 2013, pp. 322–34, doi: 10.1016/j.solener.2013.09.025.
  • 6. Ahmed J., Salam Z., A critical evaluation on maximum power point tracking methods for partial shading in PV systems, Renewable and Sustainable Energy Reviews, Vol. 47(0), 2015, pp. 933–53. doi: 10.1016/j.rser.2015.03.080.
  • 7. Koutroulis E., Blaabjerg F., A new technique for tracking the global maximum powerpoint of PV arrays operating under partial-shading conditions, IEEE Journal of Photovoltaics, Vol. 2(2), 2012, pp. 184–90, doi: 10.1109/JPHOTOV.2012.2183578.
  • 8. Bidram A., Davoudi A., Balog R.S., Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays, IEEE Journal of Photovoltaics, Vol. 2(4), 2012, pp. 532–46, doi: 10.1109/JPHOTOV.2012.2202879.
  • 9. Tabish S., Ashraf I., Simulation of Partial Shading on Solar Photovoltaic Modules with Experimental Verification, International Journal of Ambient Energy, Vol. 38, 2015, pp. 1–21, doi: 10.1080/01430750.2015.1074614.
  • 10. Bhattacharya T., Chakraborty A., Pal K., Computer Simulation of the Influence of Shading on Solar Photovoltaic Array, International Journal of Ambient Energy, Vol. 38, 2016, pp. 1–19, doi: 10.1080/01430750.2016.1155484.
  • 11. Taheri H. Salam Z. , Ishaque K., A Novel Maximum Power Point Tracking Control of Photovoltaic System Under Partial and Rapidly Fluctuating Shadow Conditions Using Differential Evolution, ISIEA 2010 IEEE Symposium on Industrial Electronics and Applications, 2011, doi: 10.1109/ISIEA.2010.5679492.
  • 12. Killi M., Samanta S., Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovoltaic Systems, IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, 2015, doi: 10.1109/TIE.2015.2407854.
  • 13. Srivastava M., Agarwal S., Sharma E., Design and Simulation of Perturb and Observe MPPT Algorithm for 72 Cell Solar PV System, International Journal of Soft Computing and Engineering, Vol. 4, Issue 6, 2015, ISSN: 2231-2307.
  • 14. Patel U., Sahu D., Tirkey D., Maximum Power Point Tracking Using Perturb & Observe Algorithm and Compare with another Algorithm, International Journal of Digital Application & Contemporary research, Vol. 2, 2013, ISSN: 2319-4863.
  • 15. Atallah A.M., Abdelaziz A.Y., Jumaah R.S., Implementation of Perturb and Observe MPPT of PV System with Direct Control Method Using Buck and Buckboost Converters, Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal, Vol. 1, No. 1, 2014.
  • 16. Srivastava M., Agarwal S., Sharma E., Design and Simulation of Perturb and Observe MPPT Algorithm for 72 Cell Solar PV System, International Journal of Soft Computing and Engineering, Vol.-4, Issue 6, 2015, ISSN: 2231-2307.
  • 17. Esram T., Chapman P.L., Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques, Energy Conversion, IEEE Transactions on Energy Conversion, Vol. 22/2, 2007, pp. 439–449, doi: 10.1109/TEC.2006.874230.
  • 18. Yu T., Chien T., Analysis and simulation of characteristics and maximum power point tracking for photovoltaic systems, in Power Electronics and Drive Systems, 2009. PEDS 2009, International Conference on, 2009, pp. 1339–1344, doi: 10.1109/PEDS.2009.5385670.
  • 19. Babaa S.E., Armstrong M., Pickert V., Overview of Maximum Power Point Tracking Control Methods for PV Systems, Journal of Power and Energy Engineering, Vol. 2, 2014, pp. 59–72, doi: 10.4236/jpee.2014.28006.
  • 20. Nguyen T.L., Low K-S., A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems, IEEE Transactions on Industrial Electronics, Vol. 57(10), 2010, 3456–3467, doi: 10.1109/TIE.2009.2039450.
  • 21. Yau H-T. et al., Sliding mode extremum seeking control scheme based on PSO for maximum power point tracking in photovoltaic systems, International Journal of Photoenergy, Vol. 2, 2013. doi: 10.1155/2013/527948.
  • 22. Ishaque K. et al., An improved particle swarm optimization (PSO)- based MPPT for PV with reduced steady-state oscillation, IEEE Transactions on Power Electronics, No. 27(8), 2012, pp. 3627–3638. doi: 10.1109/TPEL.2012.2185713.
  • 23. Ishaque K., Salam Z., A deterministic particle swarm optimization (PSO) maximum power point tracker for photovoltaic system under partial shading condition, IEEE Transactions on Industrial Electronics, Vol. 60(8), 2012, doi: 10.1109/TIE.2012.2200223.
  • 24. Killi M., Samanta S., Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovoltaic Systems, IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, 2015, doi: 10.1109/TIE.2015.2407854.
  • 25. Patel U., Sahu D., Tirkey D., Maximum Power Point Tracking Using Perturb & Observe Algorithm and Compare With another Algorithm, International Journal of Digital Application & Contemporary research, Vol. 2, 2013, ISSN: 2319-4863.
  • 26. Tey K.S., Mekhilef S., Modified Incremental Conductance MPPT Algorithm to Mitigate Inaccurate Responses Under Fast-Changing Solar Irradiation Level, Solar Energy, Vol. 101, 2014, pp. 333–342, doi: 10.1016/j.solener.2014.01.003.
  • 27. Kobayashi K., Takano I., Sawada Y., A Study on a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System under Partially Shaded Insolation Conditions, IEEE Transactions on Industry Applications, Vol. 153(4), 2006, doi: 10.1109/PES.2003.1271058.
  • 28. Mohanty S., Subudhi B., Ray P.K., A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions, IEEE Transactions on Sustainable Energy, Vol. 7(1), 2016, pp. 181–188, doi: 10.1109/TSTE.2015.2482120.
  • 29. Kot R., Stynski S., Malinowski M., Hardware methods for detecting global maximum power point in a PV power plant, 2015 IEEE International Conference on Industrial Technology (ICIT), doi.: 10.1109/ICIT.2015.7125527.
  • 30. Basiński, K., Ufnalski, B., Grzesiak, L.M., Hybrid MPPT Algorithm for PV Systems Under Partially Shaded Conditions Using a Stochastic Evolutionary Search and a Deterministic Hill Climbing, Power Electronics and Drives, Vol. 2(2), 2017, pp. 49–59, doi: https://doi.org/10.5277/ped170212.
  • 31. Hung J.Y., Gao W.B., Hung J.C., Variable Structure Control: A Survey, IEEE Transactions on Industrial Electronics, Vol. 40/2–22, 1993, doi: 10.1109/41.184817.
  • 32. Gao W., Hung J.C., Variable Structure Control of Nonlinear Systems: A New Approach, IEEE Transactions on Industrial Electronics, Vol. 40(1), 1993, pp. 45–55, doi: 10.1109/41.184820.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
2. Wersja polska na stronach 33-42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4f38717-abdc-433b-b969-d996d036d35a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.