PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of antibacterial polyurethane film and its properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polyurethane (PU) is a polymer widely used in the biomedical field with excellent mechanical properties and good biocompatibility. However, it usually exhibits poor antibacterial properties for practical applications. Efforts are needed to improve the antibacterial activities of PU films for broader application prospect and added application values. In the present work, two PU films, TDI-P(E-co-T) and TDI-N-100-P(E-co-T), were prepared. Silver nanoparticles (AgNPs) were composited into the TDI-N-100-P(E-co-T) film for better mechanical properties and antibacterial activities, and resultant PU/AgNPs composite film was systematically characterized and studied. The as-prepared PU/AgNPs composite film exhibits much better antibacterial properties than the traditional PU membrane, exhibiting broader application prospect.
Rocznik
Strony
50--55
Opis fizyczny
21 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
autor
  • Department of Clinical Laboratory, People’s Hospital of Pudong New District, Shanghai 201200, P. R. China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
Bibliografia
  • 1. Engels, H., Pirkl, H., Albers, R., Albach, R.W., Krause, J., Hoffmann, A., Casselmann, H. & Dormish, J. (2013). Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 52, 9422-9441.
  • 2. Li, M., Chen, J., Shi, M.T., Zhang, H.L., Ma, P.X. & Guo, B.L. (2019). Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem. Eng. J. 375, UNSP 121999.
  • 3. Wang, Y., Wang, M.N., Zhao, X.H., Gao, Y. & Liu, M.X. (2017). Determination of antioxidant content in hydroxylterminated ethylene oxide-tetrahydrofuran copolyether using ultraviolet spectrophotometry. Chem. Propell. Polym. Mater. 15, 92–94.
  • 4. Sun, M.F., Ren, X.E., Zhang, J.H., Zhang, X.M. & Wang, H.Y. (2019). Preparation and characterization of one-component polyurethane powder adhesives by the solution polymerization technology. J. Appl. Polym. Sci. 136, 47898.
  • 5. Tsou, C., Lee, H., Hung, W., Wang, C., Shu, C., Suen, M. & De Guzman, M. (2016). Synthesis and properties of antibacterial polyurethane with novel bis(3-Pyridinemethanol) silver chain extender. Polymer. 85, 96–105.
  • 6. Wekwejt, M., Michno, A., Truchan, K., Palubicka, A., Swieczko-Zurek, B., Osyczka, A. M. & Zielinski, A. (2019). Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials 136, 47898.
  • 7. Artifon, W., Pasini, S.M., Valerio, A., Gonzalez, S.Y. G., de Souza, S.M.D.G.U. & de Souza, A.A.U. (2019). Harsh environment resistant – antibacterial zinc oxide/Polyetherimide electrospun composite scaffolds. Mat. Sci. Eng. C-Mater. 103, 109859.
  • 8. Kim, J.H., Ma, J., Lee, S., Jo, S. & Kim, C.S. (2019). Effect of ultraviolet-ozone treatment on the properties and antibacterial activity of zinc oxide sol-gel film. Materials 12, 2422.
  • 9. Hu, Z.H., Zhang, L., Zhong, L.L., Zhou, Y.Z., Xue, J.Q. & Li, Y. (2019). Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohyd. Polym. 219, 290–297.
  • 10. Dil, N.N. & Sadeghi, (2019). M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J. Hazard. Mater. 351, 38–53.
  • 11. Jaffari, Z.H., Lam, S.M., Sin, J.C. & Zeng, H.H. (2019). Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mat. Sci. Semicon. Proc. 101, 103–115.
  • 12. Yu, N.X., Cai, T.M., Sun, Y., Jiang, C.J., Xiong, H., Li, Y.B. & Peng, H.L. (2018). A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int. J. Phar. 552, 277–287.
  • 13. Wang, Y., Li, P., Xiang, P., Lu, J., Yuan, J., & Shen, J. (2016). Electrospun polyurethane/keratin/agnp biocomposite mats for biocompatible and antibacterial wound dressings. J. Mater. Chem. B. 4, 635–648.
  • 14. Jain, P. & Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59–63.
  • 15. Lan, Y.H., Li, D.H., Zhai, J.X. & Yang, R.J. (2015). Molecular dynamics simulation on the binder of ethylene oxide-tetrahydrofuran copolyether cross-linked with N100. Ind. Eng. Chem. Res. 54, 3563–3569.
  • 16. Zhai, J.X., Qu, Z.Y., Zou, Y.C., Guo, X.Y. & Yang, R.J. (2015). Study on preparation and properties of polyether polytriazole elastomers. Chinese J. Polym. Sci. 33, 597–606.
  • 17. Madhavan, K. & Reddy B.S.R. (2006). Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties. J. Polym. Sci. Pol. Chem. 44, 2980–2989.
  • 18. Stribeck, A., Eling, B., Poselt, E., Malfois, M. & Schander, E. (2019). Melting, solidification, and crystallization of a thermoplastic polyurethane as a function of hard segment content. Macromol. Chem. Phys. 220, 1900074.
  • 19. Wang, F.F., Chen, S.L., Wu, Q., Zhang, R.C. & Sun, P.C. (2019). Strain-induced structural and dynamic changes in segmented polyurethane elastomers. Polymer 163, 154–161.
  • 20. Fang, H.G., Wang, H.L., Sun, J., Wei, H.B. & Ding, Y.S. (2016). Tailoring elastomeric properties of waterborne polyurethane by incorporation of polymethyl methacrylate with nanostructural heterogeneity. RSC. Adv. 6, 13589–13599.
  • 21. Wu, G.M., Liu, G.F., Chen, J. & Kong, Z.W. (2017). Preparation and properties of thermoset composite films from two-component waterborne polyurethane with low loading level nanofibrillated cellulose. Prog. Org. Coat. 106, 170–176
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4ef006c-e490-4e0f-8f5b-dde8cc3bf850
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.