PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosorption of Pb(II) and Zn(II) by Extracellular Polymeric Substance (Eps) of Rhizobium Radiobacter : Equilibrium, Kinetics and Reuse Studies

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extracellular polymeric substance (EPS) produced from Rhizobium radiobacter F2, designated as EPSF2 , was investigated as a biosorbent for the removal of Pb(II) and Zn(II) from aqueous solution. The optimum biosorption pH values were 5.0 for Pb(II) and 6.0 for Zn(II). Kinetics study revealed that the biosorption followed pseudo-first-order model well, and the equilibrium data fit the Langmuir model better. The adsorbed metal ions could be effectively desorbed by HCl. Desrobed EPSF2 regained 80% of the initial biosorption capacity after five cycles of biosorption-desorption-elution. These results demonstrated that EPSF2 could be a promising alternative for Pb(II) and Zn(II) removal from aqueous solution.
Rocznik
Strony
129--140
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
autor
  • State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
autor
  • State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
autor
  • Institute of Municipal Engineering, Zhejiang University, Hangzhou 310058, China
autor
  • State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
Bibliografia
  • [1] Tunali, S., Çabuk, A., & Akar, T. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil, Chem Eng J, 115, 203-211.
  • [2] Coral, M.N.U., Korkmaz, H., Arikan, B., & Coral, G. (2005). Plasmid mediated heavy metal resistances in Enterobacter spp. isolated from Sofulu landfill, in Adana, Turkey, Annals of microbiology, 55, 175.
  • [3] Özdemir, S., Kilinc, E., Poli, A., Nicolaus, B., & Güven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: Equilibrium, kinetic and thermodynamic studies, Chem Eng J, 152, 195-206.
  • [4] Sreejalekshmi, K.G., Krishnan, K.A. & Anirudhan, T.S. (2009). Adsorption of Pb (II) and Pb (II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies, J Hazard Mater, 161, 1506-1513.
  • [5] Marín, A.B.P., Aguilar, M.I., Ortuňo, J.F., Meseguer, V.F., Sáez, J., & Lloréns, M. (2010). Biosorption of Zn(II) by orange waste in batch and packed-bed systems, J Chem Technol Biotechnol, 85, 1310-1318.
  • [6] Acheampong, M.A., Pereira, J.P.C., Meulepas, R.J.W., & Lensa, P.N.L. (2011). Biosorption of Cu(II) onto agricultural materials from tropical regions, J Chem Technol Biotechnol, 86, 1184-1194.
  • [7] Quintelas, C., Rocha, Z., Silva, B., Fonseca, B., & Figueiredo, H. (2009). Removal of Cd (II), Cr (VI), Fe (III) and Ni (II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chem Eng J, 149, 319-324.
  • [8] Öztürk, A. (2007). Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis,J Hazard Mater, 147, 518-523.
  • [9] Yan, G. & Viraraghavan, T. (2003). Heavy-metal removal from aqueous solution by fungus Mucor rouxii, Water Res, 37, 4486-4496.
  • [10] Salehizadeh, H., & Shojaosadati, S.A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus, Water Res, 37, 4231-4235.
  • [11] Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D. & Harvey, N.W. (2006) Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa, Water Res, 40, 3759-3766.
  • [12] Parker, D.L., Mihalick, J.E., Plude, J.L., Plude, M.J., Clark, T.P., Egan, L., Flom, L., Rai, L.C., & Kumar H.D. (2000). Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa f. flos-aquae strain C3-40, J Appl Phycol, 12, 219-224.
  • [13] Comte, S., Guibaud, G., & Baudu, M. (2006). Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound, Process Biochem, 41, 815-823.
  • [14] Veglió, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review, Hydrometallurgy, 44, 301-316.
  • [15] Liu, H. & Fang, H.H.P. (2002). Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data, Biotechnol Bioeng, 80, 806-811.
  • [16] Sponza, D.T. (2002). Extracellular polymer substances and physicochemical properties of flocs in steady and unsteady-state activated sludge systems, Process Biochem, 37, 983-998.
  • [17] Zhu, Y.B., Ma, F., Huang, J.L., & Liu, Y.H. (2006). Study on Flocculation Properties of Bioflocculant and Optimization of Flocculation Conditions, China Water and Wastewater, 22, 4-8.
  • [18] Ma, F., Liu, J.L., Li., S.G., Yang, J.X., Zhang, L.Q., Wu, B., & Zhu, Y.B. (2003). Development of complex microbial flocculant, China Water and Wastewater, 19, 1-4.
  • [19] Kim, S.Y., Kim, J.H., Kim, C.J., & Oh, O.K. (1996). Metal adsorption of the polysaccharide produced from Methylobacterium organophilum, Biotechnol Lett, 18, 1161-1164.
  • [20] Elmaci, A., Yonar, T., & Ozengin, N. (2007). Biosorption characteristics of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions by Chara sp. and Cladophora sp., Water Environ Res, 79, 1000-1005.
  • [21] Sag Y., & Kutsal, T. (1995). Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics, Chem Eng J, 60, 181-188.
  • [22] Rakhshaee, R., Giahi, M., & Pourahmad, A. (2009). Studying effect of cell wall's carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution, J Hazard Mater, 163, 165-173.
  • [23] Huang, H., Cheng, G., Chen, L., Zhu, X. & Xu, H. (2009). Lead (II) removal from aqueous solution by spent Agaricus bisporus: Determination of optimum process condition using Taguchi method, Water, Air,Soil Pollut, 203, 53-63.
  • [24] Sari, A., & Tuzen, M. (2009). Kinetic and equilibrium studies of biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Amanita rubescens) biomass, J Hazard Mater, 164, 1004-1011.
  • [25] Munagapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R., & Abburi, K. (2010). Biosorption of Cu (II), Cd (II) and Pb (II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics, Chem Eng J, 157, 357-365.
  • [26] Yao, Z.Y., Qi, J.H. & Wang, L.H. (2010). Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu (II) onto chestnut shell, J Hazard Mater, 174, 137-143.
  • [27] Baysal, Z., Çinar, E., Bulut, Y., Alkan, H., & Dogru, M. (2009). Equilibrium and thermodynamic studies on biosorption of Pb (II) onto Candida albicans biomass, J Hazard Mater, 161, 62-67.
  • [28] Zhang, L., Zhao, L., Yu, Y., & Chen, C. (1998). Removal of lead from aqueous solution by non-living Rhizopus nigricans, Water Res, 32, 1437-1444.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4ec4109-83d0-4e8e-bd0b-53d73dce983a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.