PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on the effect of strategically placed multiple diathermal obstructions within a porous enclosure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel strategy to reduce the convection heat transfer across a differentially heated, fluid-saturated porous enclosure has been reported in the present investigation. This objective is achieved by sequentially and strategically embedding multiple diathermal obstructions within the enclosure. To describe it in short, the strategy is to identify the location of maximum convection strength and place a single obstruction at that location. This strategy is re-applied to find an updated location of maximum convection strength and placing another single obstruction at that newly updated location. Darcy flow model is used to describe the fluid flow in porous media and solved using Successive Accelerated Replacement scheme using finite difference method. The parameters under study are type of obstructions (horizontal, vertical, right-inclined, left-inclined, straight-crossed and inclined-crossed), number of obstructions (0 ⩽ 𝑁 ⩽ 10) and modified Rayleigh number (100 ⩽ 𝑅𝑎 ⩽ 2000). The size of obstruction (𝑍) has been fixed at 0.1. Flow and temperature distribution are plotted using streamlines and isotherms. The strength of convection is quantified using Nusselt number and maximum absolute stream function. It has been found that introducing obstructions within a differentially heated porous enclosure weakens the convection strength developed within it and the maximum reduction can be obtained for inclined-cross obstruction.
Rocznik
Strony
419--444
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Pimpri Chinchawad College of Engineering, Pune, Maharashtra, India
  • Pimpri Chinchawad College of Engineering, Pune, Maharashtra, India
  • Department of Mechanical Engineering, National Institute of Technology, Jamshedpur, Jharkhand, India
Bibliografia
  • [1] D.B. Ingham, A. Bejan, E. Mamut, and I. Pop. Emerging Technologies and Techniques in Porous Media. Springer, 2012. doi: 10.1007/978-94-007-0971-3
  • [2] K. Vafai and H. Hadim. Overview of current computational studies of heat transfer in porous media and their applications-natural and mixed convection. In W.J. Minkowych (ed.) Advances in Numerical Heat Transfer, volume 2, chapter 10, pages 331–369, Taylor & Francis Group, 2019. doi: 10.1201/9781315136882.
  • [3] R. Vadi and K. Sepanloo. An improved porous media model for nuclear reactor analysis. Nuclear Science and Techniques, 27:24, 2016. doi: 10.1007/s41365-016-0016-7.
  • [4] M.A.B. Zanoni, J. Wang, J.L. Torero, and J.I. Gerhard. Multiphase modelling of water evaporation and condensation in an air-heated porous medium. Applied Thermal Engineering, 212:118516, 2022. doi: 10.1016/j.applthermaleng.2022.118516.
  • [5] A. Chakravarty, K. Ghosh, S. Sen, and A. Mukhopadhyay. Impact of liquid coolant subcooling on boiling heat transfer and dryout in heat-generating porous media. Thermal Science and Engineering Progress, 30:101251, 2022. doi: 10.1016/j.tsep.2022.101251.
  • [6] G.R. Shanker and K.O. Homan. Convective transport from geothermal borehole heat exchangers embedded in a fluid-saturated porous medium. Renewable Energy, 196:328–342, 2022. doi: 10.1016/j.renene.2022.06.089.
  • [7] M.A. Sheremet, M.S. Astanina, and I. Pop. MHD natural convection in a square porous cavity filled with a water-based magnetic fluid in the presence of geothermal viscosity. International Journal of Numerical Methods for Heat & Fluid Flow, 28(9):2111–2131, 2018. doi: 10.1108/HFF-12-2017-0503.
  • [8] I.V. Kapyrin. Assessment of density driven convection effect on the dynamics of contaminant propagation on a deep well radioactive waste injection disposal site. Journal of Computational and Applied Mathematics, 392:113425, 2021. doi: 10.1016/j.cam.2021.113425.
  • [9] F. Agostini, C. Sundberg, and R. Navia. Is biodegradable waste a porous environment? A review. Waste Management & Research, 30(10):1001–1015, 2012. doi: 10.1177/0734242X12452444.
  • [10] Y.W. Tsang and K Pruess. A study of thermally induced convection near a high-level nuclear waste repository in partially saturated fractured tuff. Water Resources Research, 23(10):1958– 1966, 1987. doi: 10.1029/WR023i010p01958.
  • [11] C. Hu, M. Sun, Z. Xie, L. Yang, Y. Song, D. Tang, and J. Zhao. Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications.Applied Thermal Engineering, 180:115845, 2020. doi: 10.1016/j.applthermaleng.2020.115845.
  • [12] V.A. Maiorov, L.L.Vasil’ev, and V,M,Polyaev. Porous heat exchangers–classification, construction, application. Journal of Engineering Physics, 47(3):1110–1123, 1984. doi: 10.1007/BF00873730,
  • [13] S. Javed, N. Deb, and S. Saha. Natural convection and entropy generation inside a square chamber divided by a corrugated porous partition. Results in Engineering, 18:101053, 2023. doi: 10.1016/j.rineng.2023.101053.
  • [14] K. Al-Farhany, A. Abdulkadhim, H.K. Hamzah, F.H. Ali, and A. Chamkha. MHD effects on nat- ural convection in a U-shaped enclosure filled with nanofluid- saturated porous media with two baffles. Progress in Nuclear Energy, 145:104136, 2022. doi: 10.1016/j.pnucene.2022.104136.
  • [15] N.M. Basher, O.R. Alomar, and I.A. Mohamed. Impact of using single heated obstacle on natural convection inside porous cavity under non-Darcy flow and thermal non-equilibrium model: A comparison between horizontal and vertical heated obstacle arrangements. International Communications in Heat and Mass Transfer, 133:105925, 2022. doi: 10.1016/j.icheatmasstransfer.2022.105925.
  • [16] A.A. Yousif, O.R. Alomar, and A.T. Hussein. Impact of using triple adiabatic obstacles on natural convection inside porous cavity under non-Darcy flow and local thermal non-equilibrium model. International Communications in Heat and Mass Transfer, 130:105760, 2022. doi: 10.1016/j.icheatmasstransfer.2021.105760.
  • [17] X. Jiang, M. Hatami, A. Abderrahmane, O. Younis, B.M. Makhdoum, and K. Guedri. Mixed convection heat transfer and entropy generation of MHD hybrid nanofluid in a cubic porous cavity with wavy wall and rotating cylinders. Applied Thermal Engineering, 226:120302, 2023. doi: 10.1016/j.applthermaleng.2023.120302.
  • [18] S.E. Ahmed and Z.A.S. Raizah. Magnetic mixed convection of a Casson hybrid nanofluid due to split lid driven heat generated porous triangular containerswith elliptic obstacles. Journal of Magnetism and Magnetic Materials, 559:169549, 2022. doi: 10.1016/j.jmmm.2022.169549.
  • [19] Z.A.S. Raizah, A.M. Aly, and S.E. Ahmed. Natural convection flow of a nanofluid-filled V- shaped cavity saturated with a heterogeneous porous medium: Incompressible smoothed particle hydrodynamics analysis. Ain Shams Engineering Journal, 12(2):2033–2046, 2021. doi: 10.1016/j.asej.2020.09.026.
  • [20] R. Mohebbi, S.A.M. Mehryan, M. Izadi, and O. Mahian. Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. Journal of Thermal Analysis and Calorimetry, 137:1719–1733, 2019. doi: 10.1007/s10973-019-08019-9.
  • [21] J.S. Chordiya and R.V. Sharma. Conjugate natural convection in a fluid- saturated porous enclosure with two solid vertical partitions. Heat Transfer—Asian Research, 47(8):1031–1047, 2018. doi: 10.1002/htj.21364.
  • [22] A.A. Alnaqi and A.A. Al-Rashed. Heat transfer in a porous cavity divided by a solid wall. International Journal of Applied Engineering Research, 13(19):14048–14059, 2018.
  • [23] J.S. Chordiya and R.V. Sharma. Numerical study on effect of corrugated diathermal partition on natural convection in a square porous cavity. Journal of Mechanical Science and Technology, 33(5):2481–2491, 2019. doi: 10.1007/s12206-019-0445-4.
  • [24] J.S. Chordiya and R.V. Sharma. Numerical analysis on the effect of wavy partitions on natural convection in porous enclosure. ASME Journal of Heat Transfer, 142(9):092601, 2020. doi: 10.1115/1.4047502.
  • [25] J.S. Chordiya and R.V. Sharma. Conjugate natural convection in porous medium with a thick square-wave partition. Journal of Thermal Science and Engineering Applications, 13(1):011006, 2021. doi: 10.1115/1.4046607.
  • [26] J.S. Chordiya and R.V. Sharma. Numerical study on the effects of multiple internal diathermal obstructions on natural convection in a fluid-saturated porous enclosure. Archive of Mechanical Engineering, 65(4):553–578, 2018. doi: 10.24425/ame.2018.125442.
  • [27] J. Chordiya and R.V. Sharma. Numerical analysis of the longitudinal size of the partition on natural convection heat transfer and fluid flow within a differentially heated porous enclosure. Heat Transfer, 52(1):890–910, 2023. doi: 10.1002/htj.22721.
  • [28] A. Bejan. On the boundary layer regime in a vertical enclosure filled with a porous medium. Letters in Heat and Mass Transfer, 6(2):93–102, 1979. doi: 10.1016/0094-4548(79)90001-8.
  • [29] R.J. Gross, M.R. Baer, and C.E. Hickox Jr. The application of flux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium. In: International Heat Transfer Conference Digital Library. Begel House Inc., 1986.
  • [30] A.C. Baytas and I. Pop. Free convection in oblique enclosures filled with a porous medium. International Journal of Heat and Mass Transfer, 42(6):1047–1057, 1999. doi: 10.1016/S0017-9310(98)00208-7.
  • [31] O.V. Trevisan and A. Bejan. Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. International Journal of Heat and Mass Transfer, 28(8):1597–1611, 1985. doi: 10.1016/0017-9310(85)90261-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4ebbf05-2b84-4ff3-85ed-2abf8e7abaff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.