Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper the linear theory of Moore–Gibson–Thompson thermoporoelasticity is considered and the basic boundary value problems (BVPs) of steady vibrations are investigated. Namely, the fundamental solution of the system of steady vibration equations are constructed explicitly by elementary functions and its basic properties are established. The formula of integral representation of regular vectors is obtained. The surface and volume potentials are introduced and their basic properties are given. Then, some helpful singular integral operators are defined for which the symbolic determinants and indexes are calculated. The BVPs of steady vibrations are reduced to the equivalent singular integral equations. Finally, the existence theorems for classical solutions of the aforementioned BVPs are proved with the help of the potential method and the theory of singular integral equations.
Czasopismo
Rocznik
Tom
Strony
3--28
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
- Institute of Fundamental and Interdisciplinary Mathematics Research, Ilia State University, K. Cholokashvili Ave. 3/5, 0162 Tbilisi, Georgia
Bibliografia
- 1. C. Cattaneo, Sulla conduzione del calore, Atti Del Seminario Matematico e Fisico Dell’Università di Modena, 3, 83–101, 1948.
- 2. C. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation, Comptes Rendus, 247, 431–433, 1958.
- 3. P. Vernotte, Les paradoxes de la théorie continue de l’équation de la chaleur, Comptes Rendus, 246, 3154–3155, 1958.
- 4. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, 15, 299–309, 1967.
- 5. M.A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics, 27, 240–253, 1956.
- 6. A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society A, London, 432, 1885, 171–194, 1991.
- 7. A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, 15, 2, 253–264, 1992.
- 8. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, 31, 3, 189–208, 1993.
- 9. J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, Oxford University Press, Oxford, 2010.
- 10. B. Straughan, Heat Waves, Springer Science Business Media, New York, 2011.
- 11. R.B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, Journal of Thermal Stresses, 22, 4-5, 451–476, 1999.
- 12. D.S. Chandrasekharaiah, Thermoelasticity with second sound: a review, Applied Mechanics Reviews, 39, 3, 355–376, 1986.
- 13. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, Applied Mechanics Review, 51, 12, 705–729, 1998.
- 14. D.D. Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics, 61, 41–73, 1989.
- 15. D.D. Joseph, L. Preziosi, Addendum to the paper heat waves, Reviews of Modern Physics, 62, 375–391, 1990.
- 16. R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Mathematics and Mechanics of Solids, 24, 4020–4031, 2019.
- 17. F.K. Moore, W.E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects, Journal of Aerospaces Sciences, 27, 2, 117–127, 1960.
- 18. P.A. Thompson, Compressible Fluid Dynamics, McGraw-Hill, New York, 1972.
- 19. N. Bazarra, J.R. Fernández, R. Quintanilla, A MGT thermoelastic problem with two relaxation parameters, Zeitschrift für Angewandte Mathematik und Physik, 74, 197, 2023.
- 20. O.A. Florea, A. Bobe, Moore–Gibson–Thompson thermoelasticity in the context of double porous materials, Continuum Mechanics and Thermodynics, 33, 2243–2252, 2021.
- 21. K. Jangid, S. Mukhopadhyay, A domain of influence theorem for a natural stress-heatflux problem in the Moore–Gibson–Thompson thermoelasticity theory, Acta Mechanica, 232, 177–187, 2021.
- 22. M. Marin, M.I.A. Othman, A.R. Seadawy, C. Carstea, A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies, Journal of Taibah University for Science, 14, 1, 653–660, 2020.
- 23. M. Ostoja-Starzewski, R. Quintanilla, Spatial behaviour of solutions of the Moore–Gibson–Thompson equation, Journal of Mathematical Fluid Mechanics, 23, 105, 2021.
- 24. R. Quintanilla, Moore–Gibson–Thompson thermoelasticity with two temperatures, Applications in Engineering Science, 1, 100006, 2020.
- 25. B. Singh, S. Mukhopadhyay, On fundamental solution of Moore–Gibson–Thompson (MGT) thermoelasticity theory, Zeitschrift für Angewandte Mathematik und Physik, 74, 105, 2023.
- 26. M.A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155–164, 1941.
- 27. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, Journal of the Acoustical Society of America, 28, 2, 168–178, 1956.
- 28. A.H.D. Cheng, Poroelasticity, Springer International Publishing, Switzerland, 2016.
- 29. Y. Ichikawa, A.P.S. Selvadurai, Transport Phenomena in Porous Media: Aspects of Micro/Macro Behaviour, Springer, Berlin, Heidelberg, 2012.
- 30. A.P.S. Selvadurai, A. Suvorov, Thermo-Poroelasticity and Geomechanics, Cambridge University Press, Cambridge, 2017.
- 31. B. Straughan, Stability and Wave Motion in Porous Media, Springer, New York, 2008.
- 32. B. Straughan, Mathematical Aspects of Multi-Porosity Continua, Advances in Mechanics and Mathematics, 38, Springer International Publishing, Cham, Switzerland, 2017.
- 33. M. Svanadze, Potential Method in Mathematical Theories of Multi-Porosity Media, Interdisciplinary Applied Mathematics, 51, Springer Nature Switzerland AG, Cham, Switzerland, 2019.
- 34. H.F. Wang, Theory of Linear Poro-Elasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton, 2000.
- 35. M. Svanadze, Uniqueness theorems in the steady vibration problems of the Moore-Gibson-Thompson thermoporoelasticity, Georgian Mathematical Journal, 2025 (in press), https://doi.org/10.1515/gmj-2024-2082.
- 36. I.N. Vekua, On metaharmonic functions, Proceedings of Tbilisi Mathematical Institute of Academy of Science Georgian SSR, 12, 105–174, 1943 [in Russian]; English trans: Lecture Notes of TICMI, 14, 1–62, 2013.
- 37. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, New York, Oxford, 1979.
- 38. S.G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4e7e091-111d-4b79-97ee-33e416d2c8ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.