PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stack generalized deep ensemble learning for retinal layer segmentation in Optical Coherence Tomography images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Segmentation of retinal layers is a vital and important step in computerized processing and the study of retinal Optical Coherence Tomography (OCT) images. However, automatic segmentation of retinal layers is challenging due to the presence of noise, widely varying reflectivity of image components, variations in morphology and alignment of layers in the presence of retinal diseases. In this paper, we propose a Fully Convolutional Network (FCN) termed as DelNet based on a deep ensemble learning approach to selectively segment retinal layers from OCT scans. The proposed model is tested on a publicly available DUKE DME dataset. Comparative analysis with other state-of-the-art methods on a benchmark dataset shows that the performance of DelNet is superior to other methods.
Twórcy
autor
  • Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
autor
  • Department of Information Technology, National Institute of Technology Karnataka, Surathkal, India
autor
  • Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India; Wellman Center for Photomedicine, Harvard Medical School, Harvard University, Boston, USA
  • Pink City Eye and Retina Center, Jaipur, India
autor
  • Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
Bibliografia
  • [1] Girish G, Kothari AR, Rajan J. Automated segmentation of intra-retinal cysts from optical coherence tomography scans using marker controlled watershed transform. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016. pp. 1292–5.
  • [2] Girish G, Thakur B, Chowdhury SR, Kothari AR, Rajan J. Segmentation of intra-retinal cysts from optical coherence tomography images using a fully convolutional neural network model. IEEE J Biomed Health Inform 2018;23(1):296–304.
  • [3] Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 2001;7(4):502.
  • [4] Girish G, Anima V, Kothari AR, Sudeep P, Roychowdhury S, Rajan J. A benchmark study of automated intra-retinal cyst segmentation algorithms using optical coherence tomography b-scans. Comput Methods Programs Biomed 2018;153:105–14.
  • [5] Anoop B, Girish G, Sudeep P, Rajan J. Despeckling algorithms for optical coherence tomography images: a review. Advanced classification techniques for healthcare analysis. IGI Global; 2019. p. 286–310.
  • [6] Duan J, Lu W, Tench C, Gottlob I, Proudlock F, Samani NN, et al. Denoising optical coherence tomography using second order total generalized variation decomposition. Biomed Signal Process Control 2016;24:120–7.
  • [7] Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995;6 (2):89–95.
  • [8] Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and alzheimer's disease. Neurosci Lett 2007;420(2):97–9.
  • [9] Gordon-Lipkin E, Chodkowski B, Reich D, Smith S, Pulicken M, Balcer L, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007;69 (16):1603–9.
  • [10] Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A. Retinal nerve fiber layer thinning in parkinson disease. Vis Res 2004;44 (24):2793–7.
  • [11] Michalik A, Martin J, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 2004;12(1):2.
  • [12] Lamirel C, Newman NJ, Biousse V. Optical coherence tomography (oct) in optic neuritis and multiple sclerosis. Rev Neurol 2010;166(12):978–86.
  • [13] Fernández DC, Salinas HM, Puliafito CA. Automated detection of retinal layer structures on optical coherence tomography images. Optics Express 2005;13(25):10200–16.
  • [14] Yin X, Chao JR, Wang RK. User-guided segmentation for volumetric retinal optical coherence tomography images. J Biomed Optics 2014;19(8).
  • [15] Mayer MA, Tornow RP, Hornegger J, Kruse FE. Fuzzy c-means clustering for retinal layer segmentation on high resolution oct images. Anal Biomed Signals Images 2008;160–6.
  • [16] Xiang D, Chen G, Shi F, Zhu W, Liu Q, Yuan S, et al. Automatic retinal layer segmentation of oct images with central serous retinopathy. IEEE J Biomed Health Inform 2019;23(1):283–95.
  • [17] Garvin MK, Abràmoff MD, Kardon R, Russell SR, Wu X, Sonka M. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-d graph search. IEEE Trans Med Imaging 2008;27(10):1495– 505.
  • [18] Li K, Wu X, Chen DZ, Sonka M. Optimal surface segmentation in volumetric images – a graph – theoretic approach. IEEE Trans Pattern Anal Mach Intell 2005;28 (1):119–34.
  • [19] Garvin MK, Abramoff MD, Wu X, Russell SR, Burns TL, Sonka M. Automated 3-d intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans Med Imaging 2009;28(9):1436–47.
  • [20] Lu S, Cheung CY-L, Liu J, Lim JH, Leung CK-S, Wong TY. Automated layer segmentation of optical coherence tomography images. IEEE Trans Biomed Eng 2010;57 (10):2605–8.
  • [21] Yang Q, Reisman CA, Chan K, Ramachandran R, Raza A, Hood DC. Automated segmentation of outer retinal layers in macular oct images of patients with retinitis pigmentosa. Biomed Optics Express 2011;2(9):2493–503.
  • [22] Duan W, Zheng Y, Ding Y, Hou S, Tang Y, Xu Y, et al. A generative model for oct retinal layer segmentation by groupwise curve alignment. IEEE Access 2018;6:25130–41.
  • [23] Ghorbel I, Rossant F, Bloch I, Tick S, Paques M. Automated segmentation of macular layers in oct images and quantitative evaluation of performances. Pattern Recognit 2011;44(8):1590–603.
  • [24] Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans Med Imaging 2011;30(2):484–96.
  • [25] Duan J, Tench C, Gottlob I, Proudlock F, Bai L. Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance. Pattern Recognit 2017;72:158–75.
  • [26] Duan J, Xie W, Liu RW, Tench C, Gottlob I, Proudlock F, et al. Oct segmentation: integrating open parametric contour model of the retinal layers and shape constraint to the mumford-shah functional. International Workshop on Shape in Medical Imaging. Springer; 2018. p. 178–88.
  • [27] Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation. Optics Express 2010;18(18):19413–28.
  • [28] Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Optics Express 2015;6(4):1172–94.
  • [29] Dufour PA, Ceklic L, Abdillahi H, Schroder S, De Dzanet S, Wolf-Schnurrbusch U, et al. Graph-based multi-surface segmentation of oct data using trained hard and soft constraints. IEEE Trans Med Imaging 2013;32(3):531–43.
  • [30] Ehnes A, Wenner Y, Friedburg C, Preising MN, Bowl W, Sekundo W, et al. Optical coherence tomography (oct) device independent intraretinal layer segmentation. Transl Vis Sci Technol 2014;3(1):1.
  • [31] Shi F, Chen X, Zhao H, Zhu W, Xiang D, Gao E, et al. Automated 3-d retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments. IEEE Trans Med Imaging 2015;34 (2):441–52.
  • [32] Vermeer K, Van der Schoot J, Lemij H, De Boer J. Automated segmentation by pixel classification of retinal layers in ophthalmic oct images. Biomed Optics Express 2011;2 (6):1743–56.
  • [33] Srinivasan PP, Heflin SJ, Izatt JA, Arshavsky VY, Farsiu S. Automatic segmentation of up to ten layer boundaries in sd-oct images of the mouse retina with and without missing layers due to pathology. Biomed Optics Express 2014;5(2):348–65.
  • [34] Fang L, Cunefare D, Wang C, Guymer RH, Li S, Farsiu S. Automatic segmentation of nine retinal layer boundaries in oct images of non-exudative amd patients using deep learning and graph search. Biomed Optics Express 2017;8 (5):2732–44.
  • [35] Hamwood J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of oct retinal layers. Biomed Optics Express 2018;9(7):3049–66.
  • [36] Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C, et al. Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Optics Express 2017;8(8):3627–42.
  • [37] Kugelman J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Automatic segmentation of oct retinal boundaries using recurrent neural networks and graph search. Biomed Optics Express 2018;9(11):5759–77.
  • [38] Shah A, Zhou L, Abrámoff MD, Wu X. Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in oct images. Biomed Optics Express 2018;9(9):4509–26.
  • [39] Kiaee F, Fahimi H, Rabbani H. Intra-retinal layer segmentation of optical coherence tomography using 3d fully convolutional networks. 2018 25th IEEE International Conference on Image Processing (ICIP); 2018. pp. 2795–9.
  • [40] Reddy TGP, Ashritha KS, Prajwala T, Girish G, Kothari AR, Koolagudi SG, et al. Retinal-layer segmentation using dilated convolutions. Proceedings of 3rd International Conference on Computer Vision and Image Processing. Springer; 2020. p. 279–92.
  • [41] Abràmoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Rev Biomed Eng 2010;3:169–208.
  • [42] Quellec G, Lee K, Dolejsi M, Garvin MK, Abramoff MD, Sonka M. Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in sd-oct of the macula. IEEE Trans Med Imaging 2010;29(6):1321–30.
  • [43] Antony B, Abramoff MD, Tang L, Ramdas WD, Vingerling JR, Jansonius NM, et al. Automated 3-d method for the correction of axial artifacts in spectral-domain optical coherence tomography images. Biomed Optics Express 2011;2(8):2403–16.
  • [44] MeindertNiemeijer XC, Lee LZK, Abràmoff MD, Sonka M. 3d segmentation of fluid-associated abnormalities in retinal oct: probability constrained graph-search-graph-cut. IEEE Trans Med Imaging 2012;31(8):1521–31.
  • [45] M. Mayer, Octseg, Friedrich-Alexander-Universität Erlangen-Nürnberg.
  • [46] Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the in _ oct consensus. Ophthalmology 2014;121(8):1572–8.
  • [47] Kafieh R, Rabbani H, Hajizadeh F, Abramoff MD, Sonka M. Thickness mapping of eleven retinal layers segmented using the diffusion maps method in normal eyes. J Ophthalmol 2015.
  • [48] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 618–26.
  • [49] Wolpert DH. Stacked generalization. Neural Netw 1992;5 (2):241–59.
  • [50] Xiao Y, Wu J, Lin Z, Zhao X. A deep learning-based multi- model ensemble method for cancer prediction. Comput Methods Programs Biomed 2018;153:1–9.
  • [51] Ren Y, Zhang L, Suganthan PN. Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput Intell Mag 2016;11(1):41–53.
  • [52] Mitchell TM, Keller RM, Kedar-Cabelli ST. Explanation-based generalization: a unifying view. Mach Learn 1986;1 (1):47–80.
  • [53] Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113(3):325–32.
  • [54] Wong KC, Moradi M, Tang H, Syeda-Mahmood T. 3d segmentation with exponential logarithmic loss for highly unbalanced object sizes. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. p. 612–9.
  • [55] Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer; 2017. p. 240–8.
  • [56] Zhu W, Huang Y, Zeng L, Chen X, Liu Y, Qian Z, et al. Anatomynet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys 2019;46(2):576–89.
  • [57] Zhang S, Choromanska AE, LeCun Y. Deep learning with elastic averaging sgd. Advances in neural information processing systems. 2015;685–93.
  • [58] Chollet F, et al. Keras; 2015, https://keras.io.
  • [59] Powers DM. Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation; 2011.
  • [60] Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26(3):297–302.
  • [61] Sudeep P, Niwas SI, Palanisamy P, Rajan J, Xiaojun Y, Wang X, et al. Enhancement and bias removal of optical coherence tomography images: an iterative approach with adaptive bilateral filtering. Comput Biol Med 2016;71:97–107.
  • [62] Kafieh R, Rabbani H, Kermani S. A review of algorithms for segmentation of optical coherence tomography from retina. J Med Signals Sens 2013;3(1):45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4e0e370-f8a8-4d63-b355-4e1511ec5339
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.