PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ensemble machine learning methods to predict the balancing of ayurvedic constituents in the human body

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we demonstrate the result of certain machine-learning methods like support vector machine (SVM), naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN), artificial neural network (ANN), and AdaBoost algorithms for various performance characteristics to predict human body constituencies. Ayurveda-dosha studies have been used for a long time, but the quantitative reliability measurement of these diagnostic methods still lags. The careful and appropriate analysis leads to an effective treatment to predict human body constituencies. From an observation of the results, it is shown that the AdaBoost algorithm with hyperparameter tuning provides enhanced accuracy and recall (0.97), precision and F-score (0.96), and lower RSME values (0.64). The experimental results reveal that the improved model (which is based on ensemble-learning methods) significantly outperforms traditional methods. According to the findings, advancements in the proposed algorithms could give machine learning a promising future.
Wydawca
Czasopismo
Rocznik
Tom
Strony
117--132
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Kongu Engineering College, Department of CSE,India
  • Kongu Engineering College, Department of CT/UG, India
  • University of Novi Pazar, Department of Computer Sciences, Serbia
autor
  • University of Novi Pazar, Department of Computer Sciences, Serbia
  • University VITEZ Travnik, Faculty of Information Technology, Bosnia and Herzegovina
autor
  • University of Novi Pazar, Department of Economic Sciences, Serbia
Bibliografia
  • [1] Acharya U.R., Oh S.L., Hagiwara Y., Tan J.H., Adeli H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Computers in Biology and Medicine, vol. 100, pp. 270–278, 2018.
  • [2] Almansour N.A., Syed H.F., Khayat N.R., Altheeb R.K., Juri R.E., Alhiyafi J., Alrashed S., Olatunji S.O.: Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study, Computers in Biology and Medicine, vol. 109, pp. 101–111, 2019.
  • [3] Andonie R.: Hyperparameter optimization in learning systems, Journal of Membrane Computing, vol. 1(4), pp. 279–291, 2019.
  • [4] Chinthala R., Kamble S., Baghel A., Bhagavathi N.: Ancient archives of DehaPrakriti (human body constitutional traits) in Ayurvedic literature: A critical review, International Journal of Research in Ayurveda and Pharmacy, vol. 10(3), pp. 18–26, 2019.
  • [5] Dev V.A., Eden M.R.: Formation lithology classification using scalable gradient boosted decision trees, Computers & Chemical Engineering, vol. 128, pp. 392–404, 2019.
  • [6] Dunlap C., Hanes D., Elder C., Nygaard C., Zwickey H.: Reliability of selfreported constitutional questionnaires in Ayurveda diagnosis, Journal of Ayurveda and Integrative Medicine, vol. 8(4), pp. 257–262, 2017.
  • [7] Ibrahim Y., Kamel S., Rashad A., Nasrat L., Jurado F.: Performance Enhancement of Wind Farms Using Tuned SSSC Based on Artificial Neural Network, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5(7), pp. 118–124, 2019.
  • [8] Khalil R.A., Saeed N., Masood M., Fard Y.M., Alouini M.S., Al-Naffouri T.Y.: Deep Learning in the Industrial Internet of Things: Potentials, Challenges, and Emerging Applications, IEEE Internet of Things Journal, 2021.
  • [9] Madaan V., Goyal A.: Predicting Ayurveda-based constituent balancing in human body using machine learning methods, IEEE Access, vol. 8, pp. 65060–65070, 2020.
  • [10] Mathpati M.M., Albert S., Porter J.D.H.: Ayurveda and medicalisation today: The loss of important knowledge and practice in health?, Journal of Ayurveda and Integrative Medicine, vol. 11(1), pp. 89–94, 2020.
  • [11] Prasher B., Gibson G., Mukerji M.: Genomic insights into ayurvedic and western approaches to personalized medicine, Journal of Genetics, vol. 95(1), pp. 209–228, 2016.
  • [12] Prasher B., Varma B., Kumar A., Khuntia B.K., Pandey R., Narang A., Tiwari P., Kutum R., Guin D., Kukreti R., et al.: Ayurgenomics for stratified medicine: TRISUTRA consortium initiative across ethnically and geographically diverse Indian populations, Journal of Ethnopharmacology, vol. 197, pp. 274–293, 2017.
  • [13] Rajasekar V., Jayapaul P., Krishnamoorthi S., Saraˇcevi´c M.: Secure Remote User Authentication Scheme on Health Care, IoT and Cloud Applications: A Multilayer Systematic Survey, Acta Polytechnica Hungarica, vol. 18(3), pp. 87–106, 2021.
  • [14] Rajasekar V., Premalatha J., Sathya K.: Multi-factor signcryption scheme for secure authentication using hyper elliptic curve cryptography and bio-hash function, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 68, pp. 923–935, 2020.
  • [15] Roopashree S., Anitha J.: Enrich Ayurveda knowledge using machine learning techniques, Indian Journal of Traditional Knowledge (IJTK), vol. 19(4), pp. 813–820, 2020.
  • [16] Tiwari P., Kutum R., Sethi T., Shrivastava A., Girase B., Aggarwal S., Patil R., Agarwal D., Gautam P., Agrawal A., et al.: Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits, PloS one, vol. 12(10), p. e0185380, 2017.
  • [17] Verma V., Agrawal S., Gehlot S.: Possible Measures to Assess Functional States of Tridosha: A Critical Review, International Journal of Health Sciences and Research, vol. 8(1), pp. 219–234, 2018.
  • [18] Woldaregay A.Z., ˚Arsand E., Walderhaug S., Albers D., Mamykina L., Botsis T., Hartvigsen G.: Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes, Artificial Intelligence in Medicine, vol. 98, pp. 109–134, 2019.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4de55a8-acbf-4dce-910c-bf1980b8b359
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.