PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the buckling and vibrational response of carbon nanotubes with spiral deformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Perfect and spiral models of carbon nanotubes (CNTs) have been simulated based on the finite element method and their vibrational and buckling behavior has been investigated. In order to evaluate their natural frequency and critical buckling load, computational tests have been conducted. It has been concluded that the existence of any geometrical modification in the configuration of perfect CNTs results in a remarkable reduction in the natural frequency and critical buckling load of CNTs. It has been also revealed that the analytical solutions are in good agreement with the finite element simulation results in the cases of perfect and spiral CNTs.
Rocznik
Strony
613--619
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Department of Solid Mechanics and Design, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia – UTM, Skudai, Johor, Malaysia
autor
  • Department of Mechanical Engineering, The University of Birjand, Birjand, Iran
autor
  • School of Engineering, Griffith University, Gold Coast Campus, Southport, Australia, and School of Engineering, The University of Newcastle, Callaghan New South Wales, Australia
Bibliografia
  • 1. Arghavan S., Singh A.V., 2011, On the vibrations of single-walled carbon nanotubes, Journal of Sound and Vibration, 330, 3102-3122
  • 2. Dai H., Wong E.W., Lieber C.M., 1996, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 272, 523-526
  • 3. Faria B., Silvestre N., 2013, Canongia Lopes JN: Induced anisotropy of chiral carbon nanotubes under combined tension-twisting, Mechanics of Materials, 58, 97-109
  • 4. Faria B., Silvestre N., Canongia Lopes J.N., 2013, Tension-twisting dependent kinematics of chiral CNTs, Composites Science and Technology, 74, 211-220
  • 5. Ghavamian A., Ochsner A., 2012, Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes, Physica E, 46, 241-249
  • 6. Ghavamian A., Ochsner A., 2013, Numerical modeling of the eigenmodes and eigen frequencies of carbon nanotubes under the influence of defects, Journal of Nano Research, 21, 159-164
  • 7. Iijima S., 1991, Helical microtubules of graphitic carbon, Nature, 354, 56-58
  • 8. Li C., Chou T.W., 2003, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, 40, 2487-2499
  • 9. Liuyue C., Yang L., Hongbo L., Yuxi C., Xiaohong X., Haibo Z., 2013, Investigation of graphite/carbon spiral nanoribbons using FeCl3-CuCl2-graphite intercalation compounds as precursors, Materials Letters, 108, 196-199
  • 10. Melchor S., Dobado J.A., 2004, CoNTub: An algorithm for connecting two arbitrary carbon nanotubes, Journal of Chemical Information and Computer Sciences, 44, 1639-1646
  • 11. Melchor S., Martin-Martinez F.J., Dobado J.A., 2011, CoNTub v2. 0-algorithms for constructing c 3-symmetric models of three-nanotube junctions, Journal of Chemical Information and Modeling, 51, 1492-1505
  • 12. Niu C., Sichel E.K., Hoch R., 1997, High power electrochemical capacitors based on carbon nanotube electrodes, Applied Physics Letters, 70, 1480-1482
  • 13. Parvaneh V., Shariati M., MajdSabeti A.M., 2009, Investigation of vacancy defects effects on the buckling behavior of SWCNTs via a structural mechanics approach, European Journal of Mechanics A/Solids, 28, 1072-1078
  • 14. Pearson D., 1982, The transfer matrix method for the vibration of compressed helical springs, Journal of Mechanical Engineering Science, 24, 163-171
  • 15. Rahmandoust M., Ochsner A., 2011, Buckling behavior and natural frequency of zigzag and armchair single-walled carbon nanotubes, Journal of Nano Research, 16, 153-160
  • 16. Renno J.M., Mace B.R., 2012, Vibration modelling of helical springs with non-uniform ends, Journal of Sound and Vibration, 331, 2809-2823
  • 17. Saito Y., Hamaguchi K., Hata K., 1997, Conical beams from open nanotubes, Nature, 389, 554-555
  • 18. Seyyed Fakhrabadi M.M., Amini A., Rastgoo A., 2012, Vibrational properties of two and three junctioned carbon nanotubes, Computational Materials Science, 65, 411-425
  • 19. To C.W.S., 2006, Bending and shear moduli of single-walled carbon nanotubes, Finite Elements in Analysis and Design, 42, 404-413
  • 20. Wong C.H., Vijayaraghavan V., 2012, Nanomechanics of imperfectly straight single walled carbon nanotubes under axial compression by using molecular dynamics simulation, Computational Materials Science, 53, 268-277
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4d9f378-2179-4c45-a97d-7f9be4f3c509
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.