PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MPC controller of PV system based Three-Level NPC Inverter under different climatic conditions connected to the grid

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza wydajności trójpoziomowego falownika NPC podłączonego do sieci przy użyciu sterownika MPC w różnych warunkach klimatycznych
Języki publikacji
EN
Abstrakty
EN
In this paper, PV arrays are connected to the grid through a three-Level NPC Inverter. Both the current control and voltage balancing performance of the inverter are ensured via model predictive control (MPC) technique. This paper is comparing and presenting operational performance analysis of grid-connected three-Level NPC Inverter results using three techniques controllers namely: Self-tuning Fuzzy Logic PI controller (FLC), Neural Network controller (ANN), and PI classical controller, under different environmental conditions to optimally tune the reference current of the controller and following the maximum power point.
PL
Opisano system ze źródłem fotowoltaicznym gdzie stosuje się zarówno bieżące operacje kontroli, jak i równoważenie napięcia NPC z porównaniem trzech różnych strategii kontrolera. Skuteczność porównuje się między trzema strategiami kontrolnymi przy różnym natężeniu promieniowania i różnej temperaturze.
Rocznik
Strony
130--137
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Smart Grids & Renewable Energies Laboratory (SRGE) at the University of Tahri Mohammed Bechar, BP 417 Route de Kenadsa, 08000 Bechar, Algeria
  • Smart Grids & Renewable Energies Laboratory (SRGE) at the University of Tahri Mohammed Bechar, BP 417 Route de Kenadsa, 08000 Bechar, Algeria
  • Smart Grids & Renewable Energies Laboratory (SRGE) at the University of Tahri Mohammed Bechar, BP 417 Route de Kenadsa, 08000 Bechar, Algeria
autor
  • University of Kasdi Merbah Ouargla, Route de Ghardaia, BP.511, 30 000, Algeria
Bibliografia
  • [1] J. Rodriguez, J. Pontt, P. Cortes, and R. Vargas, “Predictive control of a three-phase neutral point clamped inverter,” in Proc. IEEE 36th PESC, 2005, pp. 1364–1369.
  • [2] D. Rekioua , E. Matagne, Optimization of Photovoltaic Power Systems: Modelization, simulation and control , Springer Verlag London 2012.
  • [3] A. Calle-Prado et al., “Model predictive current control of gridconnected neutral-point-clamped converters to meet lowvoltage ride-through requirements,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1503–1514, Mar. 2015.
  • [4] Jose Rodriguez, Steffen Bernet, Peter K. Steimer, Ignacio E. Lizama, “A Survey on Neutral-Point-Clamped Inverters”, IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2219-2230, Jul. 2010.
  • [5] Sixing Du, Jinjun Liu, Jiliang Lin, “Hybrid Cascaded H-brigde converter for Harmonic Current Compensation”, IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2170-2179, May 2013.
  • [6] Hill CA, Such MC, Chen D, Gonzalez J, Grady WM. Battery energy storage for enabling integration of distributed solar power generation. IEEE Transactions on the smart grid. 2012 Jun;3(2):850-7.
  • [7] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “A technique for improving P&O MPPT performances of doublestage grid-connected photovoltaic systems” ,IEEE Trans. Ind. Electron., vol. 56, no. 11,pp. 4473–4482, Nov. 2009.
  • [8] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques”, IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
  • [9] G N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963– 973, Jul. 2005.
  • [10] A. Calle-Prado, S. Alepuz, J. Bordonau, J. Nicolas-Apruzzese, P. Cortes, and J. Rodriguez, "Model Predictive Current Control of Grid-Connected Neutral-Point-Clamped Converters to Meet Low-Voltage Ride-Tbrougb Requirements ," IEEE Transactions on Industrial Electron ics, vol. 62, pp. 1503-1514, 2015.
  • [11] A. Bouzidi, M. L. Bendaas, S. Barkat and M. Bouzidi, “Sliding mode control of three-level NPC inverter based grid-connected photovoltaic system”, 2017 6th International Conference on Systems and Control (ICSC), Batna, 2017, pp. 354-359.
  • [12] A. Zorig, M. Belkheiri, S. Barkat and A. Rabhi, “Control of three-level NPC inverter based grid connected PV system”, 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT), Tlemcen, 2015, pp. 1-6.
  • [13] T. Taufik, T. Wong, O. Jong, and D. Dolan, “Design and simulation of multiple-input single-output DC-DC converter,” in 2012 Ninth International Conference on Information Technology-New Generations, 2012, pp. 478–483.
  • [14] A. Calle-Prado, S. Alepuz, J. Bordonau, J. Nicolas-Apruzzese, P. Cortés and J. Rodriguez, “Model Predictive Current Control of Grid-Connected Neutral-Point-Clamped Converters to Meet Low-Voltage Ride-Through Requirements”, in IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1503- 1514, March 2015.
  • [15] A. Rezvani, M. Izadbakhsh, and M. Gandomkar, “Microgrid dynamic responses enhancement using artificial neural network-genetic algorithm for photovoltaic system and fuzzy controller for high wind speeds,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 29, no. 2, pp. 309–332, 2016.
  • [16] M. R. Vincheh, A. Kargar, and G. A. Markadeh, “A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems,” Arabian Journal for Science and Engineering, vol. 39, no. 6, pp. 4715–4725, 2014.
  • [17] R. Ramaprabha, V. Gothandaraman, K. Kanimozhi, R. Divya, and B. L. Mathur, “Maximum power point tracking using GAoptimized artificial neural network for solar PV system,” in 2011 1st International Conference on Electrical Energy Systems, 2011, pp. 264–268.
  • [18] J. Yang and V. Honavar, “Feature subset selection using a genetic algorithm,” in Feature extraction, construction and selection, Springer, 1998, pp. 117–136.
  • [19] K. Xu and S. Liu, “Speed Sensorless Control with ANN and Fuzzy PI Adaptation Mechanism for Induction Motor Drive,” Sensors & Transducers, vol. 158, no. 11, p. 302, 2013.
  • [20] E. Irmak and N. Güler, “Model predictive control of grid-tied three level neutral point clamped inverter integrated with a double layer multi-input single output DC/DC converter,” in 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), 2018, pp. 1–6.
  • [21] P. Q. Dzung, N. D. Tuyen, N. T. Tien, and N. C. Viet, “Model predictive current control for T-type NPC inverter using new online inductance estimation method,” in 2016 IEEE Region 10 Conference (TENCON), 2016, pp. 316–321.
  • [22] Y. A. AMOR, F. HAMOUDI, and A. KHELDOUN, “Three-phase Three-level Inverter Grid-tied PV System with Fuzzy Logic Control based MPPT,” Algerian Journal of Signals and Systems, vol. 3, no. 3, pp. 96–105, 2018.
  • [23] S. Janous, D. Janik, T. Kosan, P. Kamenickỳ, and Z. Peroutka, “Comparative study of vector PWM and FS-MPC for 3-level Neutral Point Clamped converter,” in Proceedings of the 16th International Conference on Mechatronics-Mechatronika 2014, 2014, pp. 158–163.
  • [24] A. M. Dadu, T. K. Soon, S. Mekhilef, and M. Nakaoka, “Lyapunov law based model predictive control scheme for grid connected three phase three level neutral point clamped inverter,” in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), 2017, pp. 512–516.
  • [25] Y. Yang, H. Wen, M. Fan, M. Xie, and R. Chen, “Fast finiteswitching- state model predictive control method without weighting factors for T-type three-level three-phase inverters,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1298–1310, 2018.
  • [26] T. C. Y. Wang, Z. Ye, G. Sinha, and X. Yuan, “Output filter design for a grid-interconnected three-phase inverter,” PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., vol. 2, pp. 779–784, 2003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4d89af2-9f29-43e4-80a4-aa6a0f9571bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.