PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporal and spatial variability of heavy metals in Marudu Bay, Malaysia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current study was conducted to estimate the baseline concentration of heavy metals in the surface sediment of Marudu Bay. Environmental parameters were measured at the seafloor and samples of the surface sediment were collected at monthly intervals for the period of 12 months. The organic content, total N, total P and concentration of 16 trace metals in the surface sediment were analyzed. The baseline concentration of metals was estimated by geochemical normalization. Anthropogenic inputs of metals were then estimated by calculating the enrichment factor for each element. The result demonstrated that the C/N ratio of sediment at Marudu Bay varies from 15 to 342, which indicates the dominance of terrestrial organic matter. The baseline concentration of V, Fe, Mn, Zn, Ti, Rb and Sr were 26.74 mg kg-1, 1.04%, 205.31 mg kg-1, 34.09 mg kg--1, 507.61 mg kg-1, 93.25 mg kg-1, 37.56 mg kg-1, respectively. The concentration of most metals was comparable to the baseline, except Mn and Zn which showed higher concentrations in most parts of Marudu Bay. In conclusion, the metal concentration in Marudu Bay is still within the permissible
Słowa kluczowe
Rocznik
Strony
353--367
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • Microbiology and Fish Disease Laboratory, Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
autor
  • Microbiology and Fish Disease Laboratory, Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
autor
  • Microbiology and Fish Disease Laboratory, Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
Bibliografia
  • [1]. Adam, A., Mohammad-Noor, N., Anton, A., Saleh, E., Saad, S. et al. (2011). Temporal and spatial distribution of Harmful Algal Bloom (HAB) species in coastal waters of Kota Kinabalu, Sabah, Malaysia. Harmful Algae 10: 495-502.
  • [2]. Agrawal, Y.C. & Pottsmith, H.C. (2000). Instruments for particle size and settling velocity observations in sediment transport. Marine Geology 168: 89-114.
  • [3]. Ali, S.A.M., Tan, W.H., Tair, R., Naser, A.A. and Sualin, F. (2014). Surface sediment analysis on heavy metals in coastal area of UMS- Tuaran, Sabah. Borneo Science 34: 6-10.
  • [4]. Alluri, H.K., Ronda, S.R., Settalluri, V.S., Suryanarayana, V. & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology 6(11): 2924-2931.
  • [5]. Anderson, D.M., Glibert, P.M. & Burkholder, J.M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25: 704-726.
  • [6]. Anderson, D.M. (2009). Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean and Coastal Management 52: 342.
  • [7]. Azanza, R.V., David, L.T., Borja, R.T., Baula, I.U. & Fukuyo, Y. (2008). An extensive Cochlodinium bloom along the western coast of the Palawan, Philippines. Harmful Algae 7: 324-330.
  • [8]. Bao, S.D. (2005). Agricultural soil analysis, third ed. China Agriculture press, Beijing.
  • [9]. Birch, G.F., Taylor, S.E. & Matthai, C. (2001). Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts. Environmental Pollution 113: 357-372.
  • [10]. Bradl, H. (2005). Heavy metals in the environment: Origin, interaction and remediation. Elsevier Academic Press, London.
  • [11]. Carpenter, E.J. & Capone, D.J. (1983). Nitrogen in the marine environment. Stony Book, Marine Science Research Center. 900p.
  • [12]. Colizza, E., Fontolan, G. & Brambati, A. (1996). Impact of a coastal disposal site for inert wastes on the physical marine environment, Barcola-Bovedo, Trieste, Italy. Environmental Geology 27(4): 270-285.
  • [13]. Covelli, S. & Fontolan, G. (1997). Application of a normalization procedure in determining regional geochemical baseline. Environmental Geology 30: 34-45.
  • [14]. Dasklakis, K.D. & O'Connor, T.P. (1995). Normalization and elemental sediment contamination in the coastal United States. Environmental Science and Technology 29: 470-477.
  • [15]. Date, A.R. & Gray, A.L. (1988). Applications of inductivity coupled plasma source mass spectrometry. Blackie Publishers, Glassgow.
  • [16]. Din, Z. (1992). Use of aluminium to normalize heavy-metal data from estuarine and coastal sediment of Strait of Melaka. Marine Pollution Bulletin 24: 484-491.
  • [17]. Hanson, P., Evans, D.W. & Colby, D.R. (1993). Assessment of elemental contamination in estuarine and coastal environments based on geochemical and statistical modelling of sediments. Marine Environmental Research 36: 237-266.
  • [18]. Ideriah, T.J.K., David-Omiema, S. & Ogbonna, D.N. (2012). Distribution of heavy metals in water and sediment along Abonnema Shoreline, Nigeria. Resources and Environment 2(1): 33-40.
  • [19]. Inengite, A.K., Oforka, N.C. & Leo, C.O. (2010). Survey of heavy metals in sediments of Kolo creek in the Niger Delta, Nigeria. Africa Journal of Environmental Science and Technology 4(9): 558-566.
  • [20]. Ismail, A., Badri, M.A. & Ramlan, M.N. (1993). The background levels of heavy metal concentration in sediments of the west coast of Peninsular Malaysia. The Science of the Total Environment Supplement 134: 315-323.
  • [21]. Kamaruzzaman, B.Y., Mohd Zahir, M.S., Akbar John, B., Jalal, K.C.A., Shahbudin, S. et al. (2011). Bioaccumulation of some heavy metal by green mussel Perna viridis (Linnaues 1758) from Pekan, Pahang, Malaysia. International Journal of Biological Chemistry 5(1): 54-60.
  • [22]. Lakherwal, D. (2014). Adsorption of heavy metals: A review. International Journal of Environmental Research and Development. 4(1): 41-48.
  • [23]. Loring, D.H. (1990). Lithium- a new approach for granulometric normalization of trace metal data. Marine Chemistry 29: 155-168.
  • [24]. Loring, D.H. (1991). Normalization of heavy metal data from estuarine and coastal sediments. ICES Journal of Marine Science 48: 101-115.
  • [25]. Malaysian Meteorological Department. Annual Report (2014). Putrajaya, Malaysia: Malaysian Meteorological Department.
  • [26]. Matthai, C., Birch, G.F., Szymezak, R. (1998). Suboxic, early diagenetic process in surficial sediments near a deepwater ocean outfall, Sydney, Australia. Journal of Geochemical Exploration 64: 1-17.
  • [27]. Middleton, R. & Grant, A. (1990). Heavy metals in the Humber estuary: Scrobicularia clay as a preindustrial datum. Proceeding of the Yorkshire Geological Society 48: 75-80.
  • [28]. Mokhtar, M., Awaluddin, A. & Low, Y.G. (1994). Water quality of Inanam river estuary and the Ko-Nelayan tiger prawn aquaculture ponds in Sabah, Malaysia. Hydrobiologia 285(1): 227-235.
  • [29]. Molinaroli, E., Guerzoni, S., Saretta, A., Mosiol, M. & Pistolato, M. (2009). Thirty-year changes (1970 to 2000) in bathymetry and sediment texture recorded in the Lagoon of Venice sub-basins, Italy. Marine Geology 258: 115-125. DOI: 10.1016/j.margeo.2008.12.001.
  • [30]. Murray, K.S. (1996). Statistical comparisons of heavy metal concentration in river sediments. Environmental Geology 27: 54-58.
  • [31]. Newman, B.K. & Watling, R.J. (2007). Definition of baseline metal concentrations for assessing metal enrichment of sediment from the south-eastern Cape coastline of South Temporal and spatial variability of heavy metals in Marudu Bay Africa. Water SA 33(5): 675-691.
  • [32]. Pempkowiak, J. (1992). Enrichment factors of heavy metals in the Southern Baltic surface sediments dated with Pb-210 and Cs-134. Environment International 17: 421-428.
  • [33]. Rae, J.E. (1997). Trace metals in deposited intertidal sediment, in biogeochemistry of intertidal sediments. In T.D. Jickells, J.E. Rae (Eds.), (pp. 16-31). Cambridge University Press.
  • [34]. Rubio, B., Nombela, M. & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin 40(11): 968-980.
  • [35]. Sany, S.B.T., Hashim, R., Rezayi, M., Salleh, A. & Safari, O. (2014). A review of strategies to monitor water and sediment quality for a sustainability assessment of marine environment. Environment Science Pollution Research 21: 813-833.
  • [36]. Schiff, K.C. & Weisberg, S.B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research 48: 161-176.
  • [37]. Shazili, N.A.M., Yunus, K., Ahmad, A.S., Abdullah, N. & Abd Rashid, M.K. (2006). Heavy metal pollution status in the Malaysian aquatic environment. Aquatic Ecosystem Health and Management 9(2): 137-145.
  • [38]. Siddique, A., Mumtaz, M., Zaigham, N.A., Mallick, K.A., Saied, S. et al. (2009). Heavy metal toxicity levels in coastal sediments of Arabian Sea along the urban Karachi (Pakistan) region. Marine Pollution Bulletin 58(9): 1406-1414.
  • [39]. Spagnoli, F., Bartholini, G., Dinelli, E. & Giordano, P. (2008). Geochemistry and particle size of surface sediments of Gulf of Manfredonia (Southern Adriatic Sea). Estuarine Coastal and Shelf Science 80: 21-30.
  • [40]. Storlazzi, C.D. & Field, M.E. (2000). Sediment distribution and transport along a rocky, embayed coast: Monterey Peninsula and Carmel Bay, California. Marine Geology 170: 289-316.
  • [41]. Sulochanan, B., Krishnakumar, P.K., Prema, D., Kaladharan, P., Valsala, K.K. et al. (2007). Trace metal contamination of the marine environment in Palk Bay and Gulf of Mannar. Journal of Marine Biology Association India 49(1): 12- 18.
  • [42]. Tan, K.S. & Ransangan, J. (2015a). Factors influencing the toxicity, detoxification and biotransformation of paralytic shellfish toxins. In D.M. Whitacre (Ed.), Reviews of environmental contamination and toxicology Volume 235 (pp. 1-25). Springer International Publishing Switzerland.
  • [43]. Tan, K.S. & Ransangan, J. (2015b). Factor influence the larvae distribution and spat settlement of Perna viridis in Marudu Bay, Sabah, Malaysia. Advance in Environmental Biology 9(17): 18-23.
  • [44]. Tan, K.S. & Ransangan, J. (2016). Feeding behaviour of green mussels, Perna viridis farmed in Marudu bay, Malaysia. Aquaculture Research 1-16. DOI: 10.1111/are.12963.
  • [45]. Tan, K.S., Denil, D.J. & Ransangan, J. (2016). High mortality and poor growth of green mussels, Perna viridis in high chlorophyll-a environment. Ocean Science Journal In press
  • [46]. Trimble, C.A., Hoenstine, R.W., Highley, A.B., Donoghue, J.F. & Ragland, P.C. (1999). Baseline sediment trace metals investigations: Steinhatchee river estuary, Florida, northeast Gulf of Mexico. Marine Georesources and Geotechnology 17(2-3): 187-197.
  • [47]. Tyson, R.V. (1995). Sedimentary organic matter. Organic facies and palynofacies. London: Chapman and Hall. 615p.
  • [48]. Wang, W.X., Yan, Q.L., Fan, W. & Xu, Y. (2002). Bioavailability of sedimentary metals from a contaminated bay. Marine Ecological Progress Series 240: 27-38.
  • [49]. Weiguo, Z., Lizhong, Y. & Hutchinson, S. (2001). Magnetic normalization of particle size effects in a heavy metal pollution study of intertidal sediments from the Yangzte estuary. Science in China 44: 185-189.
  • [50]. Weisberg, S.B., Wilson, H.T., Heimbunch, D.G., Windom, H.L. & Summers, J.K. (2000). Comparison of sediment metal: Aluminium relationships between the eastern and gulf coasts of the United States. Environmental Monitoring and Assessment 61(3): 373-385.
  • [51]. Xu, H., Liu, B. and Wu, F. (2010). Spatial and temporal variations of Rb/Sr ratios of the bulk surface sediments in Lake Qinghai. Geochemical Transactions 11(3).
  • [52]. Yang, S.L., Li, H., Ysebaert, T., Bouma, T.J., Zhang, W.X. et al. (2008). Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls. Estuarine Coastal and Shelf Science 77: 657-671.
  • [53]. Yap, C.K., Ismail, A. & Tan, S.G. (2004). Heavy metal (Cd, Cu, Pb and Zn) concentrations in the green-lipped mussel Perna viridis (Linnaeus) collected from some wild and aquaculture sites in the west coast of Peninsular Malaysia. Food Chemistry 84: 569-575.
  • [54]. Yap, C.K., Ismail, A., Tan, S.G. & Rahim Ismail. A. (2006). Is gender a factor contributing to the natural variations in the accumulation of heavy metals (Cd, Cu, Pb and Zn) by the green-lipped mussel Perna viridis? Indian Journal of Marine Science 35: 29-35.
  • [55]. Yap, C.K., Edward, F.B. & Tan, S.G. (2007). Determination of heavy metal distribution in the green mussel Perna viridis as bioindicators of heavy metal contamination in the Johore Straits and Senggarang Peninsular Malaysia. Trends in Applied Science Research 2(4): 284-294.
  • [56]. Yap, C.K. & Al-Barwani, S.M. (2012). A comparative study of condition indices and heavy metals in Perna viridis population at Sebatu and Muar, Peninsular Malaysia. Sains Malaysiana 41(9): 1063-1069.
  • [57]. Zaaboub, N., Oueslati, W., Helali, M.A., Abdeljaouad, S.A., Huertas, F.J. et al. (2014). Trace elements in different marine sediment fractions of the Gulf of Tunis (Central Mediterranean Sea). Chemical Speciation and Bioavailability 26(1): 1-12.
  • [58]. Zhang, J. (1995). Geochemistry of trace metals from Chinese River/ Estuary systems: an overview. Estuarine Coastal and Shelf Science 41: 631-658.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4d739fb-488a-48c1-b57e-10578e71463b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.