PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved proximal method with quasi-distance for nonconvex multiobjective optimization problem

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multiobjective optimization is the optimization with several conflicting objective functions. However, it is generally tough to find an optimal solution that satisfies all objectives from a mathematical frame of reference. The main objective of this article is to present an improved proximal method involving quasidistance for constrained multiobjective optimization problems under the locally Lipschitz condition of the cost function. An instigation to study the proximal method with quasi distances is due to its widespread applications of the quasi distances in computer theory. To study the convergence result, Fritz John’s necessary optimality condition for weak Pareto solution is used. The suitable conditions to guarantee that the cluster points of the generated sequences are Pareto-Clarke critical points are provided.
Wydawca
Rocznik
Strony
333--340
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Department of Mathematics, Naresuan University, Phitsanulok, Thailand
  • Department of Mathematics, Razi University, Kermanshah, Iran
  • Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia
  • Department of Industrial Engineering, OSTIM Technical University, Ankara, Turkey
Bibliografia
  • [1] H. C. F. Apolinário, E. A. Papa Quiroz and P. R. Oliveira, A scalarization proximal point method for quasiconvex multiobjective minimization, J. Global Optim. 64 (2016), no. 1, 79-96.
  • [2] G. C. Bento, J. X. Cruz Neto, G. López, A. Soubeyran and J. C. O. Souza, The proximal point method for locally Lipschitz functions in multiobjective optimization with application to the compromise problem, SIAM J. Optim. 28 (2018), no. 2, 1104-1120.
  • [3] V. Brattka, Recursive quasi-metric spaces, Theoret. Comput. Sci. 305 (2003), 17-42.
  • [4] R. S. Burachik, C. Y. Kaya and M. M. Rizvi, A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets, J. Optim. Theory Appl. 162 (2014), no. 2, 428-446.
  • [5] J. V. Burke, M. C. Ferris and M. Qian, On the Clarke subdifferential of the distance function of a closed set, J. Math. Anal. Appl. 166 (1992), no. 1, 199-213.
  • [6] L.-C. Ceng and J.-C. Yao, Approximate proximal methods in vector optimization, European J. Oper. Res. 183 (2007), no. 1, 1-19.
  • [7] T. D. Chuong and D. S. Kim, Approximate solutions of multiobjective optimization problems, Positivity 20 (2016), no. 1, 187-207.
  • [8] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262.
  • [9] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, Society for Industrial and Applied Mathematics, Philadelphia, 1983.
  • [10] G. de Carvalho Bento, S. D. B. Bitar, J. A. X. da Cruz Neto, A. Soubeyran and J. C. O. Souza, A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems, Comput. Optim. Appl. 75 (2020), no. 1, 263-290.
  • [11] D. T. Luc, Theory of Vector Optimization, Lecture Notes in Econom. and Math. Systems 319, Springer, Berlin, 1989.
  • [12] H.-P. A. Künzi, H. Pajoohesh and M. P. Schellekens, Partial quasi-metrics, Theoret. Comput. Sci. 365 (2006), no. 3, 237-246.
  • [13] F. G. Moreno, P. R. Oliveira and A. Soubeyran, A proximal algorithm with quasi-distance. Application to habit’s formation, Optimization 61 (2012), no. 12, 1383-1403.
  • [14] S. Mostaghim, J. Branke and H. Schmeck, Multi-objective particle swarm optimization on computer grids, in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM, New York (2007), 869-875.
  • [15] E. A. Papa Quiroz, L. Mallma Ramirez and P. R. Oliveira, An inexact proximal method for quasiconvex minimization, European J. Oper. Res. 246 (2015), no. 3, 721-729.
  • [16] J. P. Penot, Circa-subdifferentials, Clarke subdifferentials, in: Calculus Without Derivatives, Grad. Texts in Math. 266, Springer, New York (2013), 357-405.
  • [17] R. A. Rocha, P. R. Oliveira, R. M. Gregório and M. Souza, A proximal point algorithm with quasi-distance in multi-objective optimization, J. Optim. Theory Appl. 171 (2016), no. 3, 964-979.
  • [18] S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric spaces, J. Math. Anal. Appl. 283 (2003), no. 1, 219-235.
  • [19] W. Stadler, Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York, 1988.
  • [20] A. Stojmirović, Quasi-metric spaces with measure, Topology Proc. 28 (2004), 655-671.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4d6bcc6-290f-4456-81e0-af7d78b2b2f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.