Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The fine quartz particle hydration and effects of metal ions on the hydration characteristics of fine quartz surface are investigated using the rheological experiment. Several important factors affecting hydration factors, such as particle sphericity, solution pH, ion species, ion concentration were investigated. The results show that viscosity and hydration factor of fine quartz suspension increase with the increase of solution pH. wherein quartz particles have more negative charges on the surface in alkaline environment and strong hydration repulsion; The introduction of metal ions enhances the hydration strength of fine quartz surface to a certain extent. In contrast, high valence and high concentration will increase the viscosity of fine quartz suspension, and the hydration factors of particle surface also increase. At the same ion concentration, the order of influence on the hydration factors of fine quartz particles is Mg2+ > Ca2+ > Na+ > K+. This finding has been attributed to the combination of metal ion hydration and its adsorption on the mineral surface. This study will provide the theoretical guiding significance for the refractory coal slime water and other mineral processing wastewater containing quartz particles.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. 150280
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine
- Anhui University of Science and Technology
autor
- Anhui University of Science and Technology
autor
- Anhui University of Science and Technology
autor
- Anhui University of Science and Technology
autor
- Anhui University of Science and Technology
autor
- Anhui University of Science and Technology
autor
- Anhui University of Science and Technology
Bibliografia
- ALLEN, N., MACHESKY, M.L., WESOLOWSKI, D.J., KABENGI, N., 2017. Calorimetric study of alkali and alkalineearth cation adsorption and exchange at the quartz-solution interface. J. Colloid Interface Sci., 504, 538-548.
- BUTT, H.-J., 1991. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J., 60, 1438-1444.
- CHEN, Q,, XU, S., LIU, Q., MASLIYAH, J., XU, Z., 2016. QCM-D study of nanoparticle interactions. Adv. Colloid Interface Sci., 233, 94-114.
- DEWAN, S., CARNEVALE, V., BANKURA, A., EFTEKHARI-BAFROOEI, A., FIORIN, G., KLEIN, M. L., BORGUET, E., 2014. Structure of water at charged interfaces: a molecular dynamics study. Langmuir, 30, 8056-8065.
- DROST-HANSEN, W. 1977. Effects of vicinal water on colloidal stability and sedimentation processes. J. Colloid Interface Sci., 58, 251-262.
- HUANG, R. X., MA, C. X., HE, Q., MA, J., WU, Z.S., HUANGFU, X.L., 2019. Ion specific effects of monovalent cations on deposition kinetics of engineered nanoparticles onto the silica surface in aqueous media. Environ. Sci.: Nano, 6, 2712-2723.
- LI, H.L., SONG, S.X., DONG, X.S., MIN, F.F., ZHAO, Y.L., PENG, C.L., NAHMAD, Y., 2018. Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration. JOM, 70, 479-484.
- LI, H.L., XU, W.N., JIA, F.F., LI, J.B., SONG, S.X., NAHMAD, Y., 2020. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int. J. Miner., Metall. Mater., 27, 857-871.
- LIU, C. F., MIN, F. F., LIU, L. Y., CHEN, J., DU, J., 2018. Mechanism of hydrolyzable metal ions effect on the zeta potential of fine quartz particles. J. Dispersion Sci. Technol., 39, 298-304.
- LIU, C., MIN, F., CHEN, J., LIU, L., REN, B., LV, K., 2022. Effect of Na+, Ca2+ on the hydration properties of quartz surface: a molecular dynamics simulation study. Physicochem. Probl. Miner. Process., 58, 147452.
- LIU, C., MIN, F., LIU, J., CHEN, J., 2019. Density Functional Theory Study of Water Molecule Adsorption on the alpha-Quartz (001) Surface with and without the Presence of Na+, Mg2+, and Ca2+. ACS Omega, 4, 12711-12718.
- LUO, Y., OU, L., CHEN, J., ZHANG, G., XIA, Y., ZHU, B., ZHOU, H., 2022. Hydration mechanisms of smithsonite from DFT-D calculations and MD simulations. Int. J. Min. Sci. Technol., https://doi.org/10.1016/j.ijmst.2022.01.009
- LV, K., MIN, F., ZHU, J., REN, B., BAI, X., WANG, C., 2021. Experiments and CFD-DEM simulations of fine kaolinite particle sedimentation dynamic characteristics in a water environment. Powder Technol., 382, 60-69.
- MARDLES, E.W.J., 1940. Viscosity of Suspensions and the Einstein Equation. Nature, 145, 970.
- MARTIN-JIMENEZ, D., CHACON, E., TARAZONA, P., GARCIA, R., 2016. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface. Nat Commun, 7, 12164.
- MIN, F.F., PENG, C.L., LIU, L.Y., 2015. Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions. Powder Technol., 283, 368-372.
- MIYAZAWA, K., KOBAYASHI, N., WATKINS, M., SHLUGER, A.L., AMANO, K., FUKUMA, T., 2016. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy. Nanoscale, 8, 7334-7342.
- MOSLEMIZADEH, A., HAFSHEJANI, K.S., SHAHBAZI, K., DEZFULI, M.Z., ZENDEHBOUDI, S., 2018. A biosurfactant for inhibiting clay hydration in aqueous solutions: Applications to petroleum industry. Can. J. Chem. Eng., 97, 384-394.
- PASHLEY, R.M., 1981a. DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci., 83, 531-546.
- PASHLEY, R.M., 1981b. Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci., 80, 153-162.
- PASHLEY, R.M., ISRAELACHVILI, J.N., 1984. Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. J. Colloid Interface Sci., 101, 511-523.
- PEI, S.L., PAN, S.Y., GAO, X., FANG, Y.K., CHIANG, P.C., 2018. Efficacy of carbonated petroleum coke fly ash as supplementary cementitious materials in cement mortars. J. Cleaner Prod., 180, 689-697.
- PENG, C., MIN, F., LIU, L., CHEN, J., 2016. A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface. Appl. Surf. Sci., 387, 308-316.
- QUEZADA, G.R., ROZAS, R.E., TOLEDO, P.G., 2017. Molecular Dynamics Simulations of Quartz (101)–Water and Corundum (001)–Water Interfaces: Effect of Surface Charge and Ions on Cation Adsorption, Water Orientation, and Surface Charge Reversal. J. Phys. Chem. C, 121, 25271-27282.
- SCHRADER, A.M., DONALDSON JR., SONG, J., CHENG, C.Y., LEE, D.W., HAN, S., ISRAELACHVILI, J.N., 2015. Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid-DMSO-H2O system. Proc Natl Acad Sci U S A, 112, 10708-10713.
- SONG, S., PENG, C., GONZALEZ-OLIVARES, M.A., LOPEZ-VALDIVIESO, A., FORT, T., 2005. Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement. J Colloid Interface Sci., 287, 114-120.
- SONG, S., PENG, C., 2005. Thickness of Solvation Layers on Nano-scale Silica Dispersed in Water and Ethanol. J. Dispersion Sci. Technol., 26, 197-201.
- SUN, Q., 2017. The physical origin of hydrophobic effects. Chem. Phys. Lett., 672, 21-25.
- ŚWIERCZEK, L., CIEŚLIK, B.M., KONIECZKA, P., 2018. The potential of raw sewage sludge in construction industry–A review. J. Cleaner Prod., 200, 342-356.
- TSENDRA, O., DANIEL BOESE, A., ISAYEV, O., GORB, L., MICHALKOVA SCOTT, A., HILL, F.C., ILCHENKO, M.M., LOBANOV, V., LESZCZYNSKA, D., LESZCZYNSKI, J., 2019. Adsorption of nitrogen-containing compounds on hydroxylated α-quartz surfaces. RSC Adv., 9, 36066-36074.
- WANG, J., REN, W., YAN, S., 2021. Structural and dynamical properties of H2O molecules confined within albite-quartz system under cyclic thermal loading: insights from molecular dynamic simulation. J. Mol. Struct., 1245, 131140.
- YU, Y., XU, X., LIU, J., LIU, Y., CAI, W., CHEN, J., 2021. The study of water wettability on solid surfaces by molecular dynamics simulation. Surf. Sci., 714, 121916.
- ZAMBRANO, H.A., WALTHER, J.H., JAFFE, R.L., 2014. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures. J. Mol. Liq., 198, 107-113.
- YIN, X., WANG, X., WU, H., TAKAHASHI, H., INABA, Y., OHNUKI, T., TAKESHITA, K., 2017. Effects of NH4+, K+, Mg2+, and Ca2+ on the Cesium Adsorption/Desorption in Binding Sites of Vermiculitized Biotite. Environ Sci Technol., 51, 13886-13894.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4d03eda-4386-4603-a950-7cafb90a24c5