PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of different measurement technologies to calculate the volume of a rock object in the Wietrznia nature reserve in Kielce

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie różnych technologii pomiarowych do obliczenia objętości obiektu skalnego w rezerwacie Wietrznia w Kielcach
Języki publikacji
EN
Abstrakty
EN
The paper presents a procedure for measuring the volume of an atypical object with an irregular shape, which is a rock formation located in the Wietrznia Nature Reserve in Kielce. Two measurement techniques were used: GNSS-RTK and terrestrial laser scanning. The use of independent measurement technologies allowed comparison of the results obtained. The results obtained lead to a discussion on the influence of the density of measurement points on the quality of the obtained results. On the basis of the measurements made, it is also possible to assess the labour intensity of the solutions applied.
PL
W pracy przedstawiono procedurę pomiaru objętości nietypowego obiektu o nieregularnym kształcie jakim jest formacja skalna zlokalizowana na terenie Rezerwatu Wietrznia w Kielcach. Zastosowano dwie techniki pomiarowe: GNSS-RTK oraz naziemne skanowanie laserowe. Zastosowanie niezależnych technologii pomiarowych pozwoliło na porównanie otrzymanych wyników. Uzyskane rezultaty skłaniają do dyskusji na temat wpływu gęstości punktów pomiarowych na jakość uzyskanych wyników. Na podstawie wykonanych pomiarów możliwa jest również ocena pracochłonności zastosowanych rozwiązań.
Rocznik
Tom
Strony
107--124
Opis fizyczny
Bibliograf. 48 poz.
Twórcy
  • Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology
  • Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology
  • Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology
autor
  • Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology
  • Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology
Bibliografia
  • 1. Apollo, M., Jakubiak, M., Nistor, S., Lewinska, P., Krawczyk, A., Borowski, Ł., Specht, M., Krzykowska-Piotrowska, K., Marchel, Ł., Pęska-Siwik, A., Kardoš, M., Maciuk, K. 2023. Geodata in science-A review of selected scientific fields, Acta Sci. Pol. Form. Circumiectus, 22, 17–40. https://doi.org/10.15576/ASP.FC/2023.22.2.02.
  • 2. Bakuła, K., Pilarska, M., Ostrowski, W., Nowicki, A., & Kurczyński, Z. 2020. UAV LiDAR data processing: influence of flight height on geometric accuracy, radiometric information and parameter setting in DTM production, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 21–26, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-21-2020.
  • 3. Bakuła, K., Kurczyński, Z. 2013. The role of structural lines extraction from high-resolution digital terrain models in the process of height data reduction, 13th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing, 579-586.
  • 4. Bakuła, K., Olszewski, R., Bujak, Ł., Gnat, M., Kietlińska, E., Stankiewicz, M. 2013. Generalizacja NMT w opracowaniu metodologii reprezentacji rzeźby terenu. Archives of Photogrammetry, Cartography and Remote Sensing, 25, 19-32.
  • 5. Bakuła, K., 2023. Accuracy of digital elevation models obtained from unmanned laser scanning data in the era of ULS technology development. Przegląd Geodezyjny, 95(9), http://dx.doi.org/0000-0001-7137-1667.
  • 6. Balawejder M., Matkowska K., Çolak H.E., 2018. The Impact of Surveying Works on the Development of Smart City. Geographic Information Systems Conference and Exhibition “GIS ODYSSEY 2018”, Conference Proceedings, Italy 10th to 14th of September 2018, Perugia, https://depot.ceon.pl/handle/123456789/16173.
  • 7. Balawejder M., Matkowska K., Rymarczyk E., 2021. Effects of land consolidation in Southern Poland. Acta Scientiarum Polonorum Administratio Locorum 20 (4), 269-282 https://www.ceeol.com/search/article-detail?id=1018076.
  • 8. Basista I., Balawejder M., Kuchta A. 2023. A land consolidation geoportal as a useful tool in land consolidation projects – A case study of villages in southern Poland. Acta Scientiarum Polonorum Administratio Locorum, 22(4), 453–469. https://doi.org/10.31648/aspal.9250.
  • 9. Bieda A., Balawejder M., Warchoł A., Bydłosz J., Kolodiy P., Pukanská K. 2021. Use of 3d technology in underground tourism: Example of Rzeszow (Poland) and Lviv (Ukraine). Acta Montanistica Slovaca, 26 (26), 205–21. DOI: https://doi.org/10.46544/ams.v26i2.03.
  • 10. Biszof, A., Oberski, T., 2018. Możliwości generowania precyzyjnego NMT na podstawie chmury punktów z projektu ISOK. Archives of Photogrammetry, Cartography and Remote Sensing, 30, 95-106.
  • 11. Błaszczak-Bąk W., Suchocki C., Mrówczyńska M. 2022. Optimization of Point Clouds for 3D Bas-Relief Modeling. Autom. Constr., 140, 104352. https://doi.org/10.1016/j.autcon.2022.104352.
  • 12. Buśko M., Zyga J., Hudecová Ľ., Kyseľ P., Balawejder M., Apollo M. 2022. Active Collection of Data in the Real Estate Cadastre in Systems with a Different Pedigree and a Different Way of Building Development: Learning from Poland and Slovakia. Sustainability; 14(22), 15046. https://doi.org/10.3390/su142215046.
  • 13. Cienciała A., Sajnóg N., Sobolewska-Mikulska K., 2023. Unreliability of cadastral data on parcel area and its effect on sustainable real estate valuation. Reports on Geodesy and Geoinformatics 116 (1), 39-46. 10.2478/rgg-2023-0009.
  • 14. Di Stefano F., Chiappini S., Gorreja A., Balestra M., Pierdicca R., 2021. Mobile 3D scan LiDAR: a literature review, Geomatics, Natural Hazards and Risk, 12:1, 2387-2429, DOI: 10.1080/19475705.2021.1964617.
  • 15. Di Stefano F., Pierdicca R., Malinverni E. S., Corneli A., & Naticchia B. 2023. Point cloud classification of an urban environment using a semi-automatic approach, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W1-2023, 131–138, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-131-2023, 2023.
  • 16. Gawronek P., Makuch M., Mitka B., Bożek P., Klapa P. 2017. 3D Scanning of the Historical Underground of Benedictine Abbey in Tyniec (Poland). In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM-Section Geodesy and Mine Surveying, Albena, Bulgaria, 29 June–5 July 2017. https://doi.org/10.5593/sgem2017/22.
  • 17. Gawronek P., Noszczyk T. 2023. Does more mean better? Remote-sensing data for monitoring sustainable redevelopment of a historical granary in Mydlniki, Kraków. Herit Sci. 11, 23 (2023). https://doi.org/10.1186/s40494-023-00864-0
  • 18. Gorgoglione L., Malinverni E.S., Smaniotto Costa C., Pierdicca R., Di Stefano F. 2023. Exploiting 2D/3D Geomatics Data for the Management, Promotion, and Valorization of Underground Built Heritage. Smart Cities 2023, 6, 243-262. https://doi.org/10.3390/smartcities6010012.
  • 19. Hejmanowska B., Warchoł A. 2011. Analiza porównawcza wysokości terenu uzyskanej za pomocą lotniczego skaningu laserowego, pomiaru GPS oraz pomiaru na modelu stereoskopowym z kamery ADS 40, Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum 9 (3), 13-24.
  • 20. Janus J., Bożek P., Mitka B., Taszakowski J., Doroż A., 2021. Long-term forest cover and height changes on abandoned agricultural land: An assessment based on historical stereometric images and airborne laser scanning data. Ecological Indicators, 120, 106904, https://doi.org/10.1016/j.ecolind.2020.106904.
  • 21. Klapa P., Mitka B., Zygmunt M. 2017. Application of Integrated Photogrammetric and Terrestrial Laser Scanning Data to Cultural Heritage Surveying. IOP Conf. Ser.: Earth Environ. Sci. 95 032007.
  • 22. Krajewska M., Szopińska K., Siemińska E., 2021. Value of land properties in the context of planning conditions risk on the example of the suburban zone of a Polish city. Land Use Policy, 109, 105697, https://doi.org/10.1016/j.landusepol.2021.105697.
  • 23. Kurczyński, Z. Bakuła, K., 2013. Generowanie referencyjnego numerycznego modelu terenu o zasięgu krajowym w oparciu o lotnicze skanowanie laserowe w projekcie ISOK. Archives of Photogrammetry, Cartography and Remote Sensing, 59-68.
  • 24. Kurczyński, Z. Bakuła, K., 2016. SAFEDAM-zaawansowane technologie wspomagające przeciwdziałanie zagrożeniom związanym z powodziami. Archives of Photogrammetry, Cartography and Remote Sensing, 28, 39-52.
  • 25. Lisańczuk M., Mitelsztedt K., Parkitna K. et al., 2020. Influence of sampling intensity on performance of two-phase forest inventory using airborne laser scanning. For. Ecosyst. 7, 65 . https://doi.org/10.1186/s40663-020-00277-6.
  • 26. Liu J, Willkens D, Gentry R. A. 2023. Conceptual Framework for Integrating Terrestrial Laser Scanning (TLS) into the Historic American Buildings Survey (HABS). Architecture; 3(3), 505-527. https://doi.org/10.3390/architecture3030028.
  • 27. Pastucha E., Rzonca A., Szombara S. 2018. Digital Documentation of Heritage Objects on Non-Developable Surfaces, 2018 Baltic Geodetic Congress (BGC Geomatics), Olsztyn, Poland, 159-163, doi: 10.1109/BGC-Geomatics.2018.00036.
  • 28. Poręba M., 2009. Modern methods of earth mass volume determination. Archives of Photogrammetry, Cartography and Remote Sensing, 19, 351-361, Kraków.
  • 29. Salach A, Bakuła K, Pilarska M, Ostrowski W, Górski K, Kurczyński Z. 2018. Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS International Journal of Geo-Information; 7(9),342. https://doi.org/10.3390/ijgi7090342.
  • 30. Skrzypczak I., Oleniacz G., Leśniak A., Zima K., Mrówczyńska M., Kazak J.K.. 2022. Scan-to-BIM Method in Construction: Assessment of the 3D Buildings Model Accuracy in Terms Inventory Measurements. Build. Res. Inf., 50, 859–880. https://doi.org/10.1080/09613218.2021.2011703.
  • 31. Skrzypczak I., Oleniacz G., Leśniak A. et al., 2023. A practical hybrid approach to the problem of surveying a working historical bell considering innovative measurement methods. Herit Sci. 11, 152. https://doi.org/10.1186/s40494-023-01007-1.
  • 32. Sobura S., Bacharz K., Granek G. 2023. Analysis of Two-Option Integration of Unmanned Aerial Vehicle and Terrestrial Laser Scanning Data for Historical Architecture Inventory. Geod. Cartogr., 49, 76–87. https://doi.org/10.3846/gac.2023.16990.
  • 33. Stokowiec K., Sobura S. 2023 Building thermal inspection case study - Appropriability assessment of hand-held and UAV infrared camera. AIP Conf. Proc. 27 November 2023; 2847 (1): 050010. https://doi.org/10.1063/5.0166021.
  • 34. Szczepaniak-Kołtun Z. 2016. Assessment of DTM resolution influence on the accuracy of flow lines extraction. Archives of Photogrammetry, Cartography and Remote Sensing. 28, 115-124. DOI: 10.14681/afkit.2016.009.
  • 35. Szopińska K., Balawejder M., Warchoł A., 2022. National legal regulations and location of noise barriers along the Polish highway. Transportation Research Part D: Transport and Environment, 109, 103359, https://doi.org/10.1016/j.trd.2022.103359.
  • 36. Szopińska K, Cienciała A, Bieda A, Kwiecień J, Kulesza Ł, Parzych P. 2022. Verification of the Perception of the Local Community concerning Air Quality Using ADMS-Roads Modeling. International Journal of Environmental Research and Public Health.; 19(17):10908. https://doi.org/10.3390/ijerph191710908.
  • 37. Tonti I, Lingua AM, Piccinini F, Pierdicca R, Malinverni ES. 2023. Digitalization and Spatial Documentation of Post-Earthquake Temporary Housing in Central Italy: An Integrated Geomatic Approach Involving UAV and a GIS-Based System. Drones.; 7(7):438. https://doi.org/10.3390/drones7070438.
  • 38. Wadowska A, Pęska-Siwik A, Maciuk K. 2022. Problems of collecting, processing and sharing geospatial data. Acta Scientiarum Polonorum. Formatio Circumiectus.;21(3-4), 5-16. doi:10.15576/ASP.FC/2022.21.3/4.5.
  • 39. Wang C., Wen C., Dai Y., Yu S., Liu M. 2020. Urban 3D modeling using mobile laser scanning: a review. Virtual Reality & Intelligent Hardware. Volume 2, Issue 3, 175-212, https://doi.org/10.1016/j.vrih.2020.05.003.
  • 40. Warchoł A., 2013. Analiza dokładności przestrzennej danych z lotniczego, naziemnego i mobilnego skaningu laserowego jako wstęp do ich integracji. Archives of Photogrammetry, Cartography and Remote Sensing, 25, 255-260.
  • 41. Warchoł A. 2015. Analysis of possibilities to registration TLS point clouds without targets on the example of the Castle Bridge in Rzeszów. International Multidisciplinary Scientific GeoConference: SGEM; Sofia Tom 1, Surveying Geology & Mining Ecology Management (SGEM). 737-742. Warchoł A. 2019. The concept of LiDAR data quality assessment in the context of BIM modeling, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1/W2, 61–66, https://doi.org/10.5194/isprs-archives-XLII-1-W2-61-2019, 2019.
  • 42. Warchoł A., Balawejder M., Banaś M., Matkowska K., Nalewajek P., Wysmulski G., 2019, Measurement and Calculation of the Volume of the Heap Located in Zastawie Village in Poland, Modern Technologies for the 3rd Millennium, Oradea (Rumunia).
  • 43. Warchoł A., Szwed P., Wężyk P. 2016. Integration of Technology of Airborne, Mobile, and Terrestrial Laser Scanning in the Process of Inventory Urban Vegetation in Selected Parts of Kraków. In Proceedings of the Pokrycie Terenu i Przewietrzanie Krakowa, Krakow, Poland, 20 October 2016, 67–79.
  • 44. Weidner L., Walton G. 2021. Monitoring the Effects of Slope Hazard Mitigation and Weather on Rockfall along a Colorado Highway Using Terrestrial Laser Scanning. Remote Sensing; 13(22):4584. https://doi.org/10.3390/rs13224584.
  • 45. Wolski B., Cienciała A., Hajdukiewicz M., Romanyszyn I., Krawczyk K., Gapys E., Warchoł A., Lęcznar J., Kapusta Ł., Granek G., Sobura Sz., Kulesza Ł., Zięba W., Borek K., Nawrot A., Mączyńska A., Cisek S., 2022. Pozyskiwanie danych geodezyjnych dla potrzeb gospodarowania przestrzenią regionu świętokrzyskiego. Wydawnictwo Politechniki Świętokrzyskiej.
  • 46. Zapłata R., Bakuła K., Stereńczak K., Kurczyński Z., Kraszewski B., Ostrowski W. 2018. Zalecenia odnośnie do pozyskiwania, przetwarzania, analizy i wykorzystania danych LiDAR w celu rozpoznania zasobów dziedzictwa archeologicznego w ramach programu AZP – między teorią a praktyką. Kurier Konserwatorski, 95–103.
  • 47. Yang B., Li J., 2022. A hierarchical approach for refining point cloud quality of a low cost UAV LiDAR system in the urban environment. ISPRS Journal of Photogrammetry and Remote Sensing, 183, 403-421, https://doi.org/10.1016/j.isprsjprs.2021.11.022.
  • 48. Zhao L., Ma X., Xiang Z., Zhang S., Hu C., Zhou Y., Chen G. 2022. Landslide Deformation Extraction from Terrestrial Laser Scanning Data with Weighted Least Squares Regularization Iteration Solution. Remote Sensing; 14(12), 2897. https://doi.org/10.3390/rs14122897.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4cf3742-305e-44a7-8642-274327eb2a39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.