PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Instability Characteristics of Free-Standing Nanowires Based on the Strain Gradient Theory with the Consideration of Casimir Attraction and Surface Effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Size-dependent dynamic instability of cylindrical nanowires incorporating the effects of Casimir attraction and surface energy is presented in this research work. To develop the attractive intermolecular force between the nanowire and its substrate, the proximity force approximation (PFA) for small separations, and the Dirichlet asymptotic approximation for large separations with a cylinder-plate geometry are employed. A nonlinear governing equation of motion for free-standing nanowires – based on the Gurtin-Murdoch model – and a strain gradient elasticity theory are derived. To overcome the complexity of the nonlinear problem in hand, a Garlerkin-based projection procedure for construction of a reduced-order model is implemented as a way of discretization of the governing differential equation. The effects of length-scale parameter, surface energy and vacuum fluctuations on the dynamic instability threshold and adhesion of nanowires are examined. It is demonstrated that in the absence of any actuation, a nanowire might behave unstably, due to the Casimir induction force.
Rocznik
Strony
489--507
Opis fizyczny
Bibliogr. 66 poz., rys., wykr., wzory
Twórcy
  • Shahid Chamran University of Ahvaz, Faculty of Engineering, Mechanical Engineering Department, Ahvaz 61357-43337, Iran
autor
  • King Fahd University of Petroleum and Minerals, Department of Mechanical Engineering, Dhahran, 31261, Kingdom of Saudi Arabia
autor
  • Shahid Chamran University of Ahvaz, Faculty of Engineering, Mechanical Engineering Department, Ahvaz 61357-43337, Iran
Bibliografia
  • [1] Cuesta, E., Mantaras, D.A., Luque, P., Alvarez, B.J., Muina, D. (2015). Dynamic Deformations in Coordinate Measuring Arms Using Virtual Simulation. International Journal of Simulation Modelling, 14(4), 609-620.
  • [2] Herzog, V., Zavec Pavlinic, N., Kuzmanovic, D., Buchmeister, B. (2016). Thermal Manikin and Its Stability for Accurate and Repeatable Measurements. International Journal of Simulation Modelling, 15(4), 676-687.
  • [3] Craighead, H.G. (2000). Nanoelectromechanical systems. Science, 290, 1532-1535.
  • [4] Wang, M.C.P., Gates, B.D. (2009). Directed assembly of nanowires. Materials Today, 12, 34-43.
  • [5] Khajeansari, A., Baradaran, G.H., Yvonnet, J. (2012). An explicit solution for bending of nanowires lying on Winkler-Pasternak elastic substrate medium based on the Euler–Bernoulli beam theory. International Journal of Engineering Science, 52, 115-128.
  • [6] Ternik, P., Rudolf, R. (2016). Numerical Analysis of Continuous Casting of NiTi Shape Memory Alloy. International Journal of Simulation Modelling, 15(3), 522-531.
  • [7] Komeili, M., Menon, C. (2016). Robust Design of Thermally Actuated Micro-Cantilever Using Numerical Simulations. International Journal of Simulation Modelling, 15(3), 409-422.
  • [8] Feng, X.L., He, R., Yang, P., Roukes, M.L. (2007). Very High Frequency Silicon Nanowire Electromechanical Resonators. Nano Letters, 7(7), 1953-1959.
  • [9] Sedighi, H.M., Daneshmand, F., Zare, J. (2014). The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect. Archives of Civil and Mechanical Engineering, 14(4), 766-775.
  • [10] Farrokhabadi, A., Abadian, N., Rach, R., Abadyan, M. (2014). Theoretical modelling of the Casimir force-induced instability in freestanding nanowires with circular cross-section. Physica E, 63, 67-80.
  • [11] Buks, E., Roukes, M.L. (2002). Quantum physics: Casimir force changes sign. Nature, 419, 119-120.
  • [12] Buks, E., Roukes, M.L. (2001). Metastability and the Casimir effect in micromechanical systems. Europhysics Letters, 54(2), 220.
  • [13] Zou, J., Marcet, Z., Rodriguez, A.W., Reid, M.T.H., McCauley, A.P., Kravchenko, I.I., Lu, T., Bao, Y., Johnson, S.G., Chan, H.B., (2013). Casimir forces on a silicon micromechanical chip. Nature Communications, 4, 1845.
  • [14] Buks, E., Roukes, M.L. (2001). Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B, 63, 033402.
  • [15] Lombardo, F.C., Mazzitelli, F.D., Villar, P.I., (2008). Numerical evaluation of the Casimir interaction between cylinders. Physical Review D, 78, 085009.
  • [16] Emig, T., Jaffe, R.L., Kardar, M., Scardicchio, A. (2006). Casimir interaction between a plate and a cylinder. Physical Review Letters. 96, 080403.
  • [17] Bordag, M., Mohideen, U., Mostepanenko, V.M. (2001). New developments in the Casimir effect. Physics Reports, 353, 1-205.
  • [18] Casimir, H.B.G. (1948). On the attraction between two perfectly conducting plates. Proc. of the Koninklijke Nederlandse Akademie van Wetenschappen, 51, 793.
  • [19] Guo, J.G., Zhao, Y.P. (2004). Influence of van der Waals and Casimir Forces on Electrostatic Torsional Actuators. Journal of Microelectromechanical Systems, 13(6), 1027.
  • [20] Lin, W.H., Zhao, Y.P., (2005). Nonlinear behavior for nanoscales electrostatic actuators with Casimir force. Chaos, Solitons & Fractals, 23, 1777.
  • [21] Casimir, H.B.G., Polder, D. (1948). The influence of retardation of the London-van der Waals forces. Physical Review Letters, 73, 360.
  • [22] Teo, L.P. (2011). First analytic correction to the proximity force approximation in the Casimir effect between two parallel cylinders. Physical Review D, 84, 065027.
  • [23] Teo, L.P. (2011). Casimir, interaction between a cylinder and a plate at finite temperature: Exact results and comparison to proximity force approximation. Physical Review D, 84, 025022.
  • [24] Barretta, R., Čanađija, M., Marotti de Sciarra, F. (2016). A higher-order Eringen model for BernoulliEuler nanobeams. Archive of Applied Mechanics, 86(3), 483-495.
  • [25] Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F. (2015). Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams. Composite Structures, 129, 80-89.
  • [26] Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F. (2017). Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sciences., 121, 151-156.
  • [27] Romano, G., Barretta, R. (2017). Stress-driven versus strain-driven nonlocal integral model for elastic nanobeams, Composites Part B, DOI: 10.1016/j.compositesb.2017.01.008
  • [28] Čanađija, M., Barretta, R., Marotti de Sciarra, F. (2016). A gradient elasticity model of Bernoulli-Euler nanobeams in nonisothermal environments. European Journal of Mechanics - A/Solids, 55, 243-255.
  • [29] Sari, M., Shaat, M., Abdelkefi, A. (2017). Frequency and mode veering phenomena of axially functionally graded non-uniform beams with nonlocal residuals. Composite Structures, 163, 280-292.
  • [30] Civalek, O., Demir, C, Akgöz, B. (2009). Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen’s nonlocal elasticity theory. Inter. J. Eng. App. Sci., 2, 47-56.
  • [31] Civalek, O., Demir, C. (2016). A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Applied Mathematics and Computation, 289, 335-352.
  • [32] Sedighi, H.M. (2014). Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronautica, 95, 111-123.
  • [33] Shaat, M., Abdelkefi, M. (2016). On a second-order rotation gradient theory for linear elastic continua. International Journal of Engineering Science, 100, 74-98.
  • [34] Keivani, M., Koochi, A., Kanani, A., Mardaneh, M.R., Sedighi, H.M., Abadyan, M. (2016). Using strain gradient elasticity in conjunction with Gurtin-Murdoch theory for modeling the coupled effects of surface and size phenomena on the instability of narrow nano-switch. Proc.of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, DOI:10.1177/0954406216642475.
  • [35] Akgoz, B., Civalek, O. (2013). Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity. Structural Engineering and Mechanics, 48(2), 195-205.
  • [36] Ansari, R., Gholami, R., Sahmani, S. (2013). Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Archive of Applied Mechanics, 83(10), 1439-1449.
  • [37] Akgoz, B, Civalek, O. (2015). A novel microstructure-dependent shear deformable beam model. International Journal of Mechanical Sciences, 99, 10-20.
  • [38] Daneshmand, F. (2014). Combined strain-inertia gradient elasticity in free vibration shell analysis of single walled carbon nanotubes using shell theory. Applied Mathematics and Computation, 243, 856-869.
  • [39] Li, L., Hu, Y., Ling, L. (2016). Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures, 75, 118-124.
  • [40] Wang, Z.Q., Zhao, Y.P., Huang, Z.P. (2010). The effects of surface tension on the elastic properties of nano structures. International Journal of Engineering Science, 48, 140-150.
  • [41] Dingrevillea, R., Qua, J., Cherkaoui, M. (2005). Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids, 53(8), 1827-1854.
  • [42] Gurtin, M.E., Murdoch, A.I. (1978). Surface stress in solids. International Journal of Solids and Structures. 14, 431-440.
  • [43] Sedighi, H.M. (2014). The influence of small scale on the pull-in behavior of nonlocal nano-bridges considering surface effect, Casimir and van der Waals attractions. International Journal of Applied Mechanics, 6(3), 22.
  • [44] Eltaher, M.A., Mahmoud, F.F., Assie, A.E., Meletis, E.I. (2013). Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Applied Mathematics and Computation, 224, 760-774.
  • [45] Fu, Y., Zhang, J. (2011). Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Applied Mathematical Modelling, 35(2), 941-951.
  • [46] Koochi, A., Hosseini-Toudeshky, H., Ovesy, H.R., Abadyan, M. (2013). Modeling the influence of surface effect on instability of nano-cantilever in presence of Van der Waals force. International Journal of Structural Stability and Dynamics, 13, 1250072.
  • [47] Sedighi, H.M., Bozorgmehri, A. (2016). Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory. Acta Mechanica, 227(6), 1575-1591.
  • [48] Sedighi, H.M., Bozorgmehri, A. (2017). Nonlinear vibration and adhesion instability of Casimir-induced nonlocal nanowires with the consideration of surface energy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(2), 427-442.
  • [49] Beer, FP., Johnston Jr., E.R., DeWolf, J.T. (1981). Mechanics of Materials. New York: McGraw-Hill.
  • [50] Lu, P., He, L.H., Lee, H.P., Lu, C. (2006). Thin plate theory including surface effects. International Journal of Solids and Structures, 44, 4631-4647.
  • [51] Yekrangi, A., Soroush, R. (2016). Modeling of the intermolecular Force-Induced Adhesion in Freestanding Nanostructures Made of Nano-beams. Journal of Applied and Computational Mechanics, 2(1), 1-7.
  • [52] Lamoreaux, S.K. (2005). The Casimir force: background, experiments, and applications. Reports on Progress in Physics, 68, 201-236.
  • [53] Chan, H.B., Bao, Y., Zou, J., Cirelli, R.A., Klemens, F., Mansfield, W.M., Pai, C.S. (2008). Measurements of the Casimir Force between a Gold Sphere and a Silicon Surface with Nanoscale v Trench Arrays. Physical Review Letters, 101, 030401.
  • [54] Li, H., Kardar, M. Fluctuation-induced forces between rough surfaces. Physical Review Letters, 67, 3275.
  • [55] Buscher, R., Emig, T. (2005). Geometry and Spectrum of Casimir Forces. Physical Review Letters, 94, 133901.
  • [56] Rahi, S.J., Emig, T., Jaffe, R.L., Kardar, M. (2008). Casimir forces between cylinders and plates. Physical Review A, 78, 012104.
  • [57] Bulgac, A., Magierski, P., Wirzba, A. (2006). Scalar Casimir effect between Dirichlet spheres or a plate and a sphere. Physical Review D, 73, 025007.
  • [58] Lam, D.C.C., Yang, F., Chong, A.C.M., et al. (2003). Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(1), 477-508.
  • [59] Shaat, M., Mohamed, S.A. (2014). Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. International Journal of Mechanical Sciences, 84, 208-217.
  • [60] Batra, R.C., Porfiri, M., Spinello, D. (2008). Vibrations of narrow microbeams predeformed by an electric field. Journal of Sound and Vibration, 309, 600-612.
  • [61] Soltani, P., Kassaei, A., Taherian, M.M. (2014). Nonlinear and quasi-linear behavior of a curved carbon nanotube vibrating in an electric force field; an analytical approach. Acta Mechanica Solida Sinica, 27(1), 97-110.
  • [62] Rahmani, O., Pedram, O. (2014). Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. International Journal of Engineering Science, 77, 55-70.
  • [63] Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.H. (2003). A Reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst., 12, 672-680.
  • [64] Whittaker, E.T., Robinson, G. (1967). The Newton-Raphson Method, §44 in the Calculus of Observations: A Treatise on Numerical Mathematics, (4th ed.), NY: Dover, 84-87.
  • [65] Nayfeh, A.H., Balachandran, B. (1995). Applied Nonlinear Dynamics. Wiley, New York.
  • [66] Farrokhabadi, A., et al. (2014). Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section. Physica E: Low-dimensional Systems and Nanostructures, 63, 67-80.
Uwagi
EN
Dr. Hassen M. OUAKAD is grateful for the support of his funding body supported by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) (grant number SB151004).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4ceb975-f96b-4877-8465-505a10338970
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.