Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, investigation on the polarization and coherence fluctuations of a flat-topped array beam in non-Kolmogorov atmospheric optics links has been presented. For this purpose, the spectral degree of polarization and coherence at the receiver plane is analytically formulated via the extended Huygens–Fresnel integral and the unified theory of polarization and coherence. The influences of the laser beam parameters and the power law exponent that describes the non-Kolmogorov spectrum of the statistical propagation properties of a partially coherent flat-topped array laser beam has been studied in detail. For the employed parameters, it can be concluded that the increase in the structure constant of turbulence (which is equivalent to the increase in turbulence strength) leads to a fast reduction in the spectral degree of coherence. Moreover, when the power law exponent is 3.1, the spectral degree of coherence exhibits a minimum value in comparison with the Kolmogorov atmospheric turbulence.
Czasopismo
Rocznik
Tom
Strony
75--88
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Photonics Laboratory Physics Department, Iran University of Science and Technology, Tehran, Iran
autor
- Photonics Laboratory Physics Department, Iran University of Science and Technology, Tehran, Iran
Bibliografia
- [1] ANDREWS L.C., PHILLIPS R.L., Laser Beam Propagation through Random Media, SPIE Press, Bellingham, WA 2005.
- [2] WANG F., LIU X., CAI Y., Propagation of partially coherent beam in turbulent atmosphere, a review, Progress in Electromagnetics Research 150, 2015, pp. 123–143, DOI: 10.2528/PIER15010802.
- [3] YAN CUI, CUN WEI, YONGTAO ZHANG, FEI WANG, YANGJIAN CAI, Effect of the atmospheric turbulence on a special correlated radially polarized beam on propagation, Optics Communications 354, 2015, pp. 353–361, DOI: 10.1016/j.optcom.2015.06.017.
- [4] DAJUN LIU, YAOCHUAN WANG, HONGMING YIN, Average intensity of four-petal Gaussian beams through paraxial optical system in atmosphere turbulence, Optik 127(6), 2016, pp. 3225–3229, DOI: 10.1016/j.ijleo.2015.12.084.
- [5] TAHERABADI G., ALAVYNEJAD M., KASHANI F.D., GHAFARY B., YOUSEFI M., Changes in the spectral degree of polarization of a partially coherent dark hollow beam in the turbulent atmosphere for on-axis and off-axis propagation point, Optics Communications 285(8), 2012, pp. 2017–2021, DOI: 10.1016/j.optcom.2011.12.047.
- [6] STRIBLING B.E., WELSH B.M, ROGGEMANN M.C., Optical propagation in non-Kolmogorov atmospheric turbulence, Proceedings of SPIE 2471, 1995, pp. 181–196, DOI: 10.1117/12.211927.
- [7] BELAND R.R., Some aspects of propagation through weak isotropic non-Kolmogorov turbulence, Proceedings of SPIE 2375, 1995, pp. 6–16, DOI: 10.1117/12.206979.
- [8] TOSELLI I., ANDREWS L.C., PHILLIPS R.L., FERRERO V., Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence, Proceedings of SPIE 6551, 2007, article ID 65510E, DOI: 10.1117/12.719033.
- [9] TOSELLI I., ANDREWS L.C., PHILLIPS R.L., FERRERO V., Scintillation index of optical plane wave propagating through non-Kolmogorov moderate-strong turbulence, Proceedings of SPIE 6747, 2007, article ID 67470B, DOI: 10.1117/12.737118.
- [10] TOSELLI I., ANDREWS L.C., PHILLIPS R.L., FERRERO V., Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence, Optical Engineering 47(2), 2008, article ID 026003, DOI: 10.1117/1.2870113.
- [11] SHCHEPAKINA E., KOROTKOVA O., Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence, Optics Express 18(10), 2010, pp. 10650–10658, DOI: 10.1364/OE.18.010650.
- [12] LUO H., XU H., CUI Z., QU J., Beam propagation factor of partially coherent Laguerre–Gaussian beams in non-Kolmogorov turbulence, Progress in Electromagnetics Research M 22, 2012, pp. 205 –218, DOI: 10.2528/PIERM11102203.
- [13] CHU X., Evolution of beam quality and shape of Hermite–Gaussian beam in non-Kolmogorov turbulence, Progress in Electromagnetics Research 120, 2011, pp. 339–353, DOI: 10.2528/ PIER11071307.
- [14] HUAFENG XU, ZHIFENG CUI, JUN QU, WEI HUANG, Propagation properties of partially coherent higher -order cosh-Gaussian beam in non-Kolmogorov turbulence, Optics and Laser Technology 50, 2013, pp. 78–86, DOI: 10.1016/j.optlastec.2013.01.025.
- [15] SHIJUN ZHU, YANGJIAN CAI, KOROTKOVA O., Propagation factor of a stochastic electromagnetic Gaussian Schell model beam, Optics Express 18(12), 2010, pp. 12587–12598, DOI: 10.1364/ OE.18.012587.
- [16] YOUQUAN DAN, BIN ZHANG, Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere, Optics Express 16(20), 2008, pp. 15563–15575, DOI: 10.1364/OE.16.015563.
- [17] YANGSHENG YUAN, YANGJIAN CAI, JUN QU, EYYUBOĞLU H.T., BAYKAL Y., Propagation factors of Hermite–Gaussian beams in turbulent atmosphere, Optics and Laser Technology 42(8), 2010, pp. 1344–1348, DOI: 10.1016/j.optlastec.2010.04.018.
- [18] EYYUBOĞLU H.T., Scintillation behavior of cos, cosh and annular Gaussian beams in non-Kolmogorov turbulence, Applied Physics B 108(2), 2012, pp. 335–343, DOI: 10.1007/s00340-011-4855-y.
- [19] HUAFENG XU, ZHIFENG CUI, JUN QU, Propagation of elegant Laguerre–Gaussian beam in non-Kolmogorov turbulence, Optics Express 19(22), 2011, pp. 21163–21173, DOI: 10.1364/OE.19.021163.
- [20] XIUXIANG CHU, CHUNHONG QIAO, XIAOXING FENG, The effect of non-Kolmogorov turbulence on the propagation of cosh-Gaussian beam, Optics Communications 283(18), 2010, pp. 3398–3403, DOI: 10.1016/j.optcom.2010.04.092
- [21] PU ZHOU, YANXING MA, XIAOLIN WANG, HAICHUAN ZHAO, ZEJIN LIU, Average spreading of a Gaussian beam array in non-Kolmogorov turbulence, Optics Letters 35(7), 2010, pp. 1043–1045, DOI: 10.1364/OL.35.001043.
- [22] ATA Y., Field correlation for flat-topped beam in non-Kolmogorov turbulent medium, Journal of Modern Optics 61(16), 2014, pp. 1356–1359, DOI: 10.1080/09500340.2014.933270.
- [23] GUOHUA WU, HONG GUO, SONG YU, BIN LUO, Spreading and direction of Gaussian–Schell model beam through a non-Kolmogorov turbulence, Optics Letters 35(5), 2010, pp. 715–717, DOI: 10.1364/OL.35.000715.
- [24] KASHANI F.D., YOUSEFI M., GOLMOHAMMADY S.H., GHEZELAYAGH M.H., GHAFARY B., Propagation characteristics of tilted partially coherent rectangular flat-topped beam in turbulent atmosphere, Optik 124(24), 2013, pp. 6679–6683, DOI: 10.1016/j.ijleo.2013.05.089.
- [25] GOLMOHAMMADY SH., YOUSEFI M., KASHANI F.D., GHAFARY B., Reliability analysis of the flat-topped array-beam FSO communication link, Journal of Modern Optics 60(9), 2013, pp. 696–703, DOI: 10.1080/09500340.2013.805843.
- [26] YANGJIAN CAI, QIANG LIN, Propagation of elliptical Hermite–Gaussian beam through misaligned optical system, Optics Communications 224(1–3), 2003, pp. 13–19, DOI: 10.1016/S0030-4018(03)01731-0.
- [27] BAIDA LÜ, HONG MA, BIN ZHANG, Propagation properties of cosh-Gaussian beams, Optics Communications 164(4–6), 1999, pp. 165–170, DOI: 10.1016/S0030-4018(99)00193-5.
- [28] ATA Y., Average transmittance of flat-topped beam in non-Kolmogorov medium, Waves in Random and Complex Media 24(4), 2014, pp. 431–438, DOI: 10.1080/17455030.2014.937473.
- [29] GOLMOHAMMADY SH., GHAFARY B., Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere, Laser Physics 26(6), 2016, article ID 066201, DOI: 10.1088/1054-660X/26/6/066201.
- [30] GOLMOHAMMADY SH., GHAFARY B., Generalized Stokes parameters and polarization behavior of flat -topped array laser beam propagating through oceanic turbulence, Waves in Random and Complex Media 27(3), 2017, pp. 403–419, DOI: 10.1080/17455030.2016.1256515.
- [31] WOLF E., Unified theory of coherence and polarization of random electromagnetic beams, Physics Letters A 312(5–6), 2003, pp. 263–267, DOI: 10.1016/S0375-9601(03)00684-4
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4ccd3ee-cc50-45ca-8e90-f5719f42cc1f