Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The wastewater treatment landscape in Central Europe, particularly in Poland, has undergone a profound transformation due to European Union (EU) integration. Fueled by EU funding and rapid technological advancements, wastewater treatment plants (WWTPs) have adopted cutting-edge control methods to adhere to EU Water Framework Directive mandates. WWTPs contend with complexities such as variable flow rates, temperature fluctuations, and evolving influent compositions, necessitating advanced control systems and precise sensors to ensure water quality, enhance energy efficiency, and reduce operational costs. Wastewater mathematical modeling provides operational flexibility, acting as a virtual testing ground for process enhancements and resource optimization. Real-time sensors play a crucial role in creating these models by continuously monitoring key parameters and supplying data to predictive models. These models empower real-time decision-making, resulting in minimized downtime and reduced expenses, thus promoting the sustainability and efficiency of WWTPs while aligning with resource recovery and environmental stewardship goals. The evolution of WWTPs in Central Europe is driven by a range of factors. To optimize WWTPs, a multi-criteria approach is presented, integrating simulation models with data mining methods, while taking into account parameter interactions. This approach strikes a balance between the volume of data collected and the complexity of statistical analysis, employing machine learning techniques to cut costs for process optimization. The future of WWTP control systems lies in “smart process control systems”, which revolve around simulation models driven by real-time data, ultimately leading to optimal biochemical processes. In conclusion, Central Europe’s wastewater treatment sector has wholeheartedly embraced advanced control methods and mathematical modeling to comply with EU regulations and advance sustainability objectives. Real-time monitoring and sophisticated modeling are instrumental in driving efficient, resource-conscious operations. Challenges remain in terms of data accessibility and cost-effective online monitoring, especially for smaller WWTPs.
Czasopismo
Rocznik
Tom
Strony
208--222
Opis fizyczny
Bibliogr. 100 poz., rys.
Twórcy
autor
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Hydraulics and Sanitary Engineering, Institute of Environmental Engineering, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-797 Warsaw, Poland
autor
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, USA
autor
- Department of Applied Mathematics, Faculty of Mathematics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
autor
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
- Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
- 1. Abba S.I., Elkiran G. 2017. Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Computer Science, 120, 156–163. https://doi.org/10.1016/j.procs.2017.11.223
- 2. Al-Hazmi H., Lu X., Grubba D., Majtacz J., Kowal P., Mąkinia J. 2021. Achieving Efficient and Stable Deammonification at Low Temperatures—Experimental and Modeling Studies. Energies, 14(13), 3961. https://doi.org/10.3390/en14133961
- 3. Al-Omari A., Wett B., Nopens I., De Clippeleir H., Han M., Regmi P., Bott C., Murthy S. 2015. Model-based evaluation of mechanisms and benefits of mainstream shortcut nitrogen removal processes. Water Sci Technol, 71(6), 840–847. https://doi.org/10.2166/wst.2015.022
- 4. Åmand L., Olsson G., Carlsson B. 2013. Aeration control – a review. Water Science and Technology, 67(11), 2374–2398. https://doi.org/10.2166/wst.2013.139
- 5. Andraka D., Piszczatowska I.K., Dawidowicz J., Kruszyński W. 2018. Calibration of Activated Sludge Model with Scarce Data Sets. Journal of Ecological Engineering, 19(6), 182–190. https://doi.org/10.12911/22998993/93793
- 6. Arrigo K.R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437(7057), 349–355. https://doi.org/10.1038/nature04159
- 7. Barbusiński K., Fajkis S., Szeląg B. 2021. Optimization of soapstock splitting process to reduce the concentration of impurities in wastewater. Journal of Cleaner Production, 280, Part 2, #124459. https://doi.org/10.1016/j.jclepro.2020.124459
- 8. Barbusiński K., Szeląg B., Studziński J. 2020. Simulation of the influence of wastewater quality indicators and operating parameters of a bioreactor on the variability of nitrogen in outflow and bulking of sludge: data mining approach. Desalination and Water Treatment, 186, 134–143. https://doi.org/10.5004/dwt.2020.25439
- 9. Barker P.S., Dold P.L. 1997. General model for biological nutrient removal activated-sludge systems: model presentation. Water Environment Research, 69(5), 969–984. https://doi.org/10.2175/106143097X125669
- 10. Battista F., Frison N., Pavan P., Cavinato C., Gottardo M., Fatone F., Eusebi A. L., Majone M., Zeppilli M., Valentino F., Fino D., Tommasi T., Bolzonella D. 2020. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added‐value bioproducts. Journal of Chemical Technology & Biotechnology, 95(2), 328–338. https://doi.org/10.1002/jctb.6096
- 11. Borzooei S., Campo G., Cerutti A., Meucci L., Panepinto D., Ravina M., Riggio V., Ruffino B., Scibilia G., Zanetti M. 2019. Optimization of the wastewater treatment plant: From energy saving to environmental impact mitigation. Sci Total Environ. 691, 1182–1189. https://doi.org/10.1016/j.scitotenv.2019.07.241
- 12. Bourgeois W., Gardey G., Servieres M., Stuetz R.M. 2003. A chemical sensor array based system for protecting wastewater treatment plants. Sensors and Actuators B: Chemical, 91(1–3), 109–116. https://doi.org/10.1016/S0925-4005(03)00074-1
- 13. Brdys M.A., Grochowski M., Gminski T., Konarczak K., Drewa M. 2008. Hierarchical predictive control of integrated wastewater treatment systems. Control Engineering Practice, 16(6), 751–767. https://doi.org/10.1016/j.conengprac.2007.01.008
- 14. Cao J., Yang E., Xu Ch., Zhang T., Xu R., Fu B., Feng Q., Fang F., Luo J. 2021. Model-based strategy for nitrogen removal enhancement in full-scale wastewater treatment plants by GPS-X integrated with response surface methodology. Science of The Total Environment, 769, #144851. https://doi.org/10.1016/j.scitotenv.2020.144851
- 15. Cerruti M., Guo B., Delatolla R., de Jonge N., Steenwijk A., Kadota P., Lawson Ch., Mao T., Oosterkamp M., Sabba F., Stokholm-Bjerregaard M., Watson I., Frigon D., Weissbrodt D. 2021. Plant-Wide Systems Microbiology for the Wastewater Industry. Environmental Science: Water Research & Technology, 7, 1687–1706. https://doi.org/10.1039/D1EW00231G
- 16. Chauhan C., Parida V., Dhir A. 2022. Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises. Technological Forecasting and Social Change, 177, #121508. https://doi.org/10.1016/j.techfore.2022.121508
- 17. Christensson M., Ekström S., Lemaire R., Le Vaillant E., Bundgaard E., Chauzy J., Stålhandske L., Hong Z., Ekenberg M. 2011. ANITATM Mox – A BioFarm Solution for Fast Start-up of Deammonifying MBBRs. Proceedings of the Water Environment Federation, 18, 265–282. https://doi.org/10.2175/193864711802639309
- 18. Copp J.B. (Editor) 2002. The COST Simulation Benchmark: Description and Simulator Manual. Official Publications of the European Community, Luxembourg
- 19. Daelman M.R.J., van Voorthuizen E.M., van Dongen L.G.J.M., Volcke E.I.P., van Loosdrecht M.C.M. 2013. Methane and nitrous oxide emissions from municipal wastewater treatment – results from a longterm study. Water Science and Technology, 67(10), 2350–2355. https://doi.org/10.2166/wst.2013.109
- 20. De Clippeleir H., Vlaeminck S.E., De Wilde F., Daeninck K., Mosquera M., Boeckx P., Verstraete W., Boon N. 2013. One-stage partial nitritation/anammox at 15 °C on pretreated sewage: feasibility demonstration at lab-scale. Appl Microbiol Biotechnol. 97, 10199–10210. https://doi.org/10.1007/s00253-013-4744-x
- 21. De Clippeleir H., Yan X., Verstraete W., Vlaeminck S.E. 2011. OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Appl Microbiol Biotechnol. 90, 1537–45. https://doi.org/10.1007/s00253-011-3222-6
- 22. Drewnowski J., Remiszewska-Skwarek A., Duda S., Łagód G. 2019. Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization. Processes, 7(5), 311. https://doi.org/10.3390/pr7050311
- 23. Drewnowski J., Shourjeh M.S., Kowal P., Cel W. 2021. Modelling AOB-NOB competition in shortcut nitrification compared with conventional nitrification-denitrification process. Journal of Physics: Conference Series, 1736, #012046. https://doi.org/10.1088/1742-6596/1736/1/012046
- 24. Drewnowski J., Szeląg B. 2020. Selected aspects of mathematical modeling and computer simulation in the context of advanced control systems of wastewater treatment plants. Przewodnik Projektanta, 2, 38–43 (in Polish)
- 25. Elawwad A., Matta M., Abo-Zaid M., Abdel-Halim H. 2019. Plant-wide modeling and optimization of a large-scale WWTP using BioWin’s ASDM model. Journal of Water Process Engineering, 31, #100819. https://doi.org/10.1016/j.jwpe.2019.100819
- 26. Eldyasti A., Andalib M., Hafez H., Nakhla G., Zhu J. 2011. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR). Journal of Hazardous Materials, 187(1–3), 140–149. https://doi.org/10.1016/j.jhazmat.2010.12.115
- 27. European Commission. 2023. The EU water framework directive. https://environment.ec.europa.eu/topics/water/water-framework-directive_en
- 28. Faris A.M., Zwain H.M., Hosseinzadeh M., Siadatmousavi S.M. 2022. Modeling of novel processes for eliminating sidestreams impacts on full-scale sewage treatment plant using GPS-X7. Sci Rep 12, 2986. https://doi.org/10.1038/s41598-022-07071-0
- 29. Fayyad U., Piatetsky-Shapiro G., Smyth P. 1996. From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3), 37–54. https://doi.org/10.1609/aimag.v17i3.1230
- 30. Gao D., Liu F., Xie Y., Liang H. 2018. Temporal and spatial distribution of ammonia-oxidizing organisms of two types of wetlands in Northeast China. Appl Microbiol Biotechnol, 102(16), 7195–7205. https://doi.org/10.1007/s00253-018-9152-9
- 31. Gernaey K.V, van Loosdrecht M.C.M., Henze M., Lind M., Jørgensen S.B. 2004. Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 19(9), 763–783. https://doi.org/10.1016/j.envsoft.2003.03.005
- 32. Giuliani S., Zarra T., Nicolas J., Naddeo V., Belgiorno V., Romain A. 2012. An Alternative Approach of the E-Nose Training Phase in Odour Impact Assessment. Chemical Engineering Transactions, 30, 139–144. https://doi.org/10.3303/CET1230024
- 33. González-Martínez A., Muñoz-Palazon B., Kruglova A., Vilpanen M., Kuokkanen A., Mikola A., Heinonen M. 2021. Performance and microbial community structure of a full-scale ANITATMMox bioreactor for treating reject water located in Finland. Chemosphere, 271, #129526. https://doi.org/10.1016/j.chemosphere.2020.129526
- 34. Gorunescu F. 2011. Data Mining (Vol. 12). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19721-5
- 35. Gu Y., Li Y., Yuan F., Yang Q. 2023. Optimization and control strategies of aeration in WWTPs: A review. Journal of Cleaner Production, 418, #138008. https://doi.org/10.1016/j.jclepro.2023.138008
- 36. Gujer W., Henze M., Mino T., van Loosdrecht M. C. M. 1999. Activated Sludge Model No. 3. Water Science and Technology, 39(1). https://doi.org/10.1016/S0273-1223(98)00785-9
- 37. Guz Ł., Łagód G., Jaromin-Gleń K., Suchorab Z., Sobczuk H., Bieganowski A. 2015. Application of Gas Sensor Arrays in Assessment of Wastewater Purification Effects. Sensors, 15, 1–21. https://doi.org/10.3390/s150100001
- 38. Güçlü D., Dursun Ş. 2010. Artificial neural network modelling of a large-scale wastewater treatment plant operation. Bioprocess and Biosystems Engineering, 33(9), 1051–1058. https://doi.org/10.1007/S00449-010-0430-X
- 39. Hastie T., Tibshirani R., Friedman J. 2009. The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7
- 40. Hauduc H., Gillot S., Rieger L., Ohtsuki T., Shaw A., Takács I., Winkler S. 2009. Activated sludge modelling in practice: an international survey. Water Science and Technology, 60(8), 1943–1951. https://doi.org/10.2166/wst.2009.223
- 41. Henze M., Grady C.P.L., Gujer W., Marais G.V.R., Matsuo T. 1987. Activated Sludge Model No. 1. IAWPRC Scientific and Technical Report No. 1, International Association on Water Pollution Research and Control, London, UK
- 42. Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C., Marais G.V.R., van Loosdrecht M.C.M. 1999. Activated Sludge Model No.2d, ASM2d. Water Science and Technology, 39(1). https://doi.org/10.1016/S0273-1223(98)00829-4
- 43. Henze M., Gujer W., Mino T., van Loosdrecht M. C. M. 2000. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Publishing
- 44. Jafarinejad S., 2020. A framework for the design of the future energy-efficient, cost-effective, reliable, resilient, and sustainable full-scale wastewater treatment plants. Current Opinion in Environmental Science & Health, 13, 91–100. https://doi.org/10.1016/j.coesh.2020.01.001
- 45. Jetten M. 1998. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 22(5), 421–437. https://doi.org/10.1016/S0168-6445(98)00023-0
- 46. Kaewyai J., Noophan P., Lin J. G., Munakata-Marr J., Figueroa L. A. 2022. A comparison of nitrogen removal efficiencies and microbial communities between anammox and de-ammonification processes in lab-scale ASBR, and full-scale MBBR and IFAS plants. International Biodeterioration & Biodegradation, 169, 105376. https://doi.org/10.1016/j.ibiod.2022.105376
- 47. Khalaf A.H., Ibrahim W.A., Fayed M., Eloffy M.G. 2021. Comparison between the performance of activated sludge and sequence batch reactor systems for dairy wastewater treatment under different operating conditions. Alexandria Engineering Journal, 60(1), 1433–1445. https://doi.org/10.1016/j.aej.2020.10.062
- 48. Kirchem D., Lynch M.Á., Bertsch V., Casey E. 2020. Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus. Applied Energy, 260, #114321. https://doi.org/10.1016/j.apenergy.2019.114321
- 49. Kits K.D., Jung M.Y., Vierheilig J., Pjevac P., Sedlacek Ch.J., Liu S., Herbold C., Stein L.Y., Richter A., Wissel H., Brüggemann N., Wagner M., Daims H. 2019. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun 10, 1836. https://doi.org/10.1038/s41467-019-09790-x
- 50. Lotti T., Kleerebezem R., van Erp Taalman Kip C., Hendrickx T. L., Kruit J., Hoekstra M., van Loosdrecht M.C. 2014. Anammox growth on pretreated municipal wastewater. Environ Sci Technol. 48(14), 7874–80. https://doi.org/10.1021/es500632k
- 51. Lu J., Hong Y., Wei Y., Gu J.D., Wu J., Wang Y., Ye F., Lin J. G. 2021. Nitrification mainly driven by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in an anammox-inoculated wastewater treatment system. AMB Expr 11, 158. https://doi.org/10.1186/s13568-021-01321-6
- 52. Lu S., Sun Y., Lu B., Zheng D., Xu S. 2020. Change of abundance and correlation of Nitrospira inopinata-like comammox and populations in nitrogen cycle during different seasons. Chemosphere, 241, #125098. https://doi.org/10.1016/j.chemosphere.2019.125098
- 53. Łagód G., Drewnowski J., Guz Ł., Piotrowicz A., Suchorab Z., Drewnowska M., Jaromin-Gleń K., Szeląg B. 2022. Rapid on-line method of wastewater parameters estimation by electronic nose for control and operating wastewater treatment plants toward Green Deal implementation. Desalination and Water Treatment, 275, 56–68. https://doi.org/10.5004/dwt.2022.28638
- 54. Ma B., Bao P., Wei Y., Zhu G., Yuan Z., Peng Y. 2015. Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen. Sci Rep. 5, #13048. https://doi.org/10.1038/srep13048
- 55. Maddela N.R., Gan Z., Meng Y., Fan F., Meng F. 2022. Occurrence and Roles of Comammox Bacteria in Water and Wastewater Treatment Systems: A Critical Review, Engineering, 17, 196–206. https://doi.org/10.1016/j.eng.2021.07.024
- 56. Mannina G., Di Bella G., Viviani G. 2010. Uncertainty assessment of a membrane bioreactor model using the GLUE methodology. Biochemical Engineering Journal, 52(2–3), 263–275. https://doi.org/10.1016/j.bej.2010.09.001
- 57. Mazurkiewicz J. 2016. Technical and economic optimisation of small wastewater treatment plants with activated sludge. Poznań University of Technology, Poznań, Poland. (in Polish)
- 58. Mąkinia J. 2010. Mathematical Modelling and Computer Simulation of Activated Sludge Systems. Water Intelligence Online, 9. https://doi.org/10.2166/9781780401683
- 59. Mąkinia J., Swinarski M., Dobiegala E. 2002. Experiences with computer simulation at two large wastewater treatment plants in northern Poland. Water Sci Technol, 45(6), 209–218. https://doi.org/10.2166/wst.2002.0108
- 60. Mąkinia J., Zaborowska E. 2020. Mathematical Modelling and Computer Simulation of Activated Sludge Systems, Second edition, IWA Publishing, London.
- 61. Mehrani M. J., Azari M., Teichgräber B., Jagemann P., Schoth J., Denecke M., Mąkinia J. 2022a. Performance evaluation and model-based optimization of the mainstream deammonification in an integrated fixed-film activated sludge reactor. Bioresource Technology, 351, #126942. https://doi.org/10.1016/j.biortech.2022.126942
- 62. Mehrani M.J., Sobotka D., Kowal P., Guo J., Mąkinia J. 2022b. New insights into modeling two-step nitrification in activated sludge systems – The effects of initial biomass concentrations, comammox and heterotrophic activities. Science of The Total Environment, 848, #157628. https://doi.org/10.1016/j.scitotenv.2022.157628
- 63. Meng H., Yang Y. C., Lin J. G., Denecke M., Gu J. D. 2017. Occurrence of anammox bacteria in a traditional full-scale wastewater treatment plant and successful inoculation for new establishment. Int Biodeterior Biodegrad 120, 224–231. https://doi.org/10.1016/j.ibiod.2017.01.022
- 64. Miraftabzadeh S.M., Longo M., Brenna M. 2023. Knowledge Extraction From PV Power Generation With Deep Learning Autoencoder and Clustering-Based Algorithms. IEEE Access, 11, 69227–69240. https://doi.org/10.1109/ACCESS.2023.3292516
- 65. Mohri M., Rostamizadeh A., Talwalkar A. 2018. Foundations of Machine Learning, Second Edition. MIT Press.
- 66. Moragaspitiya Ch., Rajapakse J., Millar G.J., Ali I. 2019. Optimization of mesophilic anaerobic digestion of a conventional activated sludge plant for sustainability. Alexandria Engineering Journal 58(3), 977–987. https://doi.org/10.1016/j.aej.2019.08.012
- 67. Mu’azu N.D., Alagha O., Anil I. 2020. Systematic Modeling of Municipal Wastewater Activated Sludge Process and Treatment Plant Capacity Analysis Using GPS-X. Sustainability, 12, 8182. https://doi.org/10.3390/su12198182
- 68. Nadeem K., Alliet M., Plana Q., Bernier J., Azimi S., Rocher V., Albasi C. 2022. Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. Science of The Total Environment, 809, 151109. https://doi.org/10.1016/j.scitotenv.2021.151109
- 69. Newhart K.B., Holloway R.W., Hering A.S., Cath T.Y. 2019. Data-driven performance analyses of wastewater treatment plants: A review. Water Research, 157, 498–513. https://doi.org/10.1016/j.watres.2019.03.030
- 70. Piłat-Rożek M., Łazuka E., Majerek D., Szeląg B., Duda-Saternus S., Łagód G. 2023. Application of Machine Learning Methods for an Analysis of E-Nose Multidimensional Signals in Wastewater Treatment. Sensors, 23, 487. https://doi.org/10.3390/s23010487
- 71. Piotrowski R., Wonia M., Wonia A. 2023. Stochastic optimisation algorithm for optimisation of controller parameters for control of dissolved oxygen in wastewater treatment plant. Journal of Water Process Engineering, 51, #103357. https://doi.org/10.1016/j.jwpe.2022.103357
- 72. Podmirseg S.M., Gómez-Brandón M., Muik M., Stres B., Hell M., Pümpel T., Murthy S., Chandran K., Park H., Insam H., Wett B. 2022. Microbial response on the first full-scale DEMON® biomass transfer for mainstream deammonification. Water Research, 218, #118517. https://doi.org/10.1016/j.watres.2022.118517
- 73. Pryce D., Kapelan Z., Memon F.A. 2022. Modelling the performance of an integrated fixed-film activated sludge (IFAS) system: a systematic approach to automated calibration. Sci Rep 12, 9416. https://doi.org/10.1038/s41598-022-13779-w
- 74. Regmi P., Sturm B., Hiripitiyage D., Keller N., Murthy S., Jimenez J. 2022. Combining continuous flow aerobic granulation using an external selector and carbon-efficient nutrient removal with AvN control in a full-scale simultaneous nitrification-denitrification process. Water Research, 210, 117991. https://doi.org/10.1016/j.watres.2021.117991
- 75. Revollar S., Vega P., Vilanova R., Francisco M. 2017. Optimal Control of Wastewater Treatment Plants Using Economic-Oriented Model Predictive Dynamic Strategies. Applied Sciences, 7(8), 813. https://doi.org/10.3390/app7080813
- 76. Rieger L., Gillot S., Vanrolleghem P. A., Shaw A. R., Johnson B. R. 2013. Overview of available modeling and simulation protocols. In: Wastewater treatment process modeling, WEF Manual of Practice N° 31, Water Environment Federation (WEF), 188–205.
- 77. Roots P., Sabba F., Rosenthal A.F., Wang Y., Yuan Q., Rieger L., Yang F., Kozak J.A., Zhang H., Wells G.F. 2020. Integrated shortcut nitrogen and biological phosphorus removal from mainstream wastewater: process operation and modeling. Environmental Science: Water Research & Technology, 6(3), 566–580. https://doi.org/10.1039/C9EW00550A
- 78. Russell S.J., Norvig P. 2010. Artificial Intelligence - A Modern Approach, Third International Edition. Pearson Education, New Jersey
- 79. Sabba F., Calhoun J., Johnson B.R., Daigger G.T., Kovács R., Takács I., Boltz J. 2017. Applications of Mobile Carrier Biofilm Modelling for Wastewater Treatment Processes, 508–512. https://doi.org/10.1007/978-3-319-58421-8_79
- 80. Sabba F., Farmer M., Jia Z., Di Capua F., Dunlap P., Barnard J., Qin C. D., Kozak J. A., Wells G., Downing L. 2023. Impact of operational strategies on a sidestream enhanced biological phosphorus removal (S2EBPR) reactor in a carbon limited wastewater plant. Science of The Total Environment, 857, Part 1, #159280. https://doi.org/10.1016/j.scitotenv.2022.159280
- 81. Sabba F., Terada A., Wells G., Smets B.F., Nerenberg R. 2018. Nitrous oxide emissions from bio- film processes for wastewater treatment. Applied Microbiology and Biotechnology, 102(22), 9815– 9829. https://doi.org/10.1007/s00253-018-9332-7
- 82. Santín I., Barbu M., Pedret C., Vilanova R. 2018. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions. ISA Transactions, 77, 146–166. https://doi.org/10.1016/j.isatra.2018.04.006
- 83. Scott-Fordsmand J.J., Amorim M.J.B. 2023, Using Machine Learning to make nanomaterials sustainable. Science of The Total Environment, 859, Part 2, #160303. https://doi.org/10.1016/j.scitotenv.2022.160303
- 84. Smolders G.J., van Loosdrecht M.C.M., Heijnen J. J. 1995. A metabolic model for the biological phosphorus removal process. Water Science and Technology, 31(2). https://doi.org/10.1016/0273-1223(95)00182-M
- 85. Sobotka D., Kowal P., Zubrowska-Sudoł M., Mąkinia J. 2018. COMAMMOX - a new pathway in the nitrogen cycle in wastewater treatment plants. J Civil Eng Environ Sci, 4(2), 031-033. http://doi.org/10.17352/2455-488X.000024
- 86. Solon K., Flores-Alsina X., Kazadi Mbamba C., Ikumi D., Volcke E.I.P., Vaneeckhaute C., Ekama G., Vanrolleghem P.A., Batstone D.J., Gernaey K.V., Jeppsson U. 2017. Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies. Water Research, 113, 97–110. https://doi.org/10.1016/j.watres.2017.02.007
- 87. Strous M., Fuerst J.A., Kramer E.H.M., Logemann S., Muyzer G., van de Pas-Schoonen K.T., Webb R., Kuenen J.G., Jetten M.S.M. 1999a. Missing lithotroph identified as new planctomycete. Nature, 400(6743), 446–449. https://doi.org/10.1038/22749
- 88. Strous M., Kuenen J.G., Jetten M.S.M. 1999b. Key Physiology of Anaerobic Ammonium Oxidation. Applied and Environmental Microbiology, 65(7), 3248–3250. https://doi.org/10.1128/AEM.65.7.3248-3250.1999
- 89. Szeląg B., Drewnowski J., Łagód G., Majerek D., Dacewicz E., Fatone F. 2020. Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning. Sensors, 20, 1941. https://doi.org/10.3390/s20071941
- 90. Szeląg B., Kiczko A., Zaborowska E., Mannina G., Mąkinia J. 2022. Modeling nutrient removal and energy consumption in an advanced activated sludge system under uncertainty. Journal of Environmental Management, 323, #116040. https://doi.org/10.1016/j.jenvman.2022.116040
- 91. Szeląg B., Zaborowska E., Mąkinia J. 2023. An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants. Journal of Water Process Engineering, 54, #103939. https://doi.org/10.1016/j.jwpe.2023.103939
- 92. Wang B., Li X., Chen D., Weng X., Chang Z. 2023. Development of an electronic nose to characterize water quality parameters and odor concentration of wastewater emitted from different phases in a wastewater treatment plant. Water Res. 235, #119878. https://doi.org/10.1016/j.watres.2023.119878
- 93. Wang R., Yu Y., Chen Y., Pan Z., Li X., Tan Z., Zhang J. 2022. Model construction and application for effluent prediction in wastewater treatment plant: Data processing method optimization and process parameters integration. Journal of Environmental Management, 302, Part A, #114020. https://doi.org/10.1016/j.jenvman.2021.114020
- 94. Wett B. 2007. Development and implementation of a robust deammonification process. Water Science and Technology, 56(7), 81–88. https://doi.org/10.2166/wst.2007.611
- 95. Wodecka B., Drewnowski J., Białek A., Łazuka E., Szulżyk-Cieplak J. 2022. Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods. Processes, 10(1), 85. https://doi.org/10.3390/pr10010085
- 96. Wu L., Shen M., Li J., Huang S., Li Z., Yan Z., Peng Y. 2019. Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal. Environmental Pollution, 254, Part A, #112965. https://doi.org/10.1016/j.envpol.2019.112965
- 97. Zaborowska E., Lu X., Makinia J. 2019. Strategies for mitigating nitrous oxide production and decreasing the carbon footprint of a full-scale combined nitrogen and phosphorus removal activated sludge system. Water Research, 162, 53–63. https://doi.org/10.1016/j.watres.2019.06.057
- 98. Zhang L.M., Duff A.M., Smith C.J. 2018. Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/sediment) boundaries in two coastal bay ecosystems. Environ Microbiol 20(8), 2834–2853. https://doi.org/10.1111/1462-2920.14238
- 99. Zhang W., Tooker N.B., Mueller A.V. 2020. Enabling wastewater treatment process automation: leveraging innovations in real-time sensing, data analysis, and online controls. Environmental Science: Water Research & Technology, 6(11), 2973–2992. https://doi.org/10.1039/D0EW00394H
- 100. Zhou P., Li Z., Snowling S., Baetz B.W., Na D., Boyd G. 2019. A random forest model for inflow prediction at wastewater treatment plants. Stoch Environ Res Risk Assess, 33, 1781–1792. https://doi.org/10.1007/s00477-019-01732-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4cc7cf1-8d43-4ffc-a20c-353dad576bd4