PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved cordic for digital subdivision of Moiré signal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contradiction between the restriction of grating manufacturing technology and high-resolution measurement requirements has been the focus of attention. The precision requirement of angle calculation during the digital subdivision processing of a Moiré signal is focused on, the causes of errors in the solution of arcsine function are analysed, and an improved coordinate rotation digital computer (CORDIC) with double-rotation iteration is proposed by discussing the principle of the conventional CORDIC in detail herein. Because the iterative number and data width of the improved CORDIC are limited by the finite digital circuit resources and thus determine the calculation accuracy directly, subsequently the overall quantization error (OQE) of the improved CORDIC is analysed. The approximate error and rounding error of the algorithm are deduced, and the error models of iterative number and data width are established. The validity and application value of the improved CORDIC are proved through simulations and experiments involving a subdividing circuit. The corresponding relation between the approximate error, rounding error and iteration number, as well as the bit width are proved by quantization. The error of subdivision with the improved CORDIC, obtained through a calibration experiment, is within ±0.5′′ and the mean variance is 0.2′′. The results of the research can be applied directly to a digital subdivision system to guide the parameter setting in the iterative process, which is of crucial importance in the quantitative analysis of error separation and error synthesis.
Rocznik
Strony
51--64
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., wzory
Twórcy
autor
  • China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
autor
  • China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
autor
  • National Institute of Metrology, Beijing, 100029, China
autor
  • National Institute of Metrology, Beijing, 100029, China
Bibliografia
  • [1] Huang, Y., Xue, Z., Huang, M., Qiao, D. (2018). The NIM continuous full circle angle standard. Measurement Science and Technology, 29(7).
  • [2] Huang, Y., Xue, Z., Qiao, D., Wang, Y. (2017). Study on the metrological performance of self-calibration angle encoder. Proc. SPIE 9684.
  • [3] Wataru, K., Tsukasa, W., Hideaki, N., Akihiro, O. (2017). Angular velocity calibration system with a self-calibratable rotary encoder. Measurement, 82(1), 246-253.
  • [4] Just, A., Krausea, M., Probsta, R., Bossea, H., Haunerdingerb, H., Spaethb, Ch., Metzb, G., Israel, W. (2009). Comparison of angle standards with the aid of a high-resolution angle encoder. Precision Engineering, 33(2), 530-533.
  • [5] Emura, T., Wang, L. (2000). A high-resolution interpolator for incremental encoders based on the quadrature PLL method. IEEE Transactions on Industrial Electronics, 47(1), 84-90.
  • [6] Chang, L., Xu, H., Zhou, Y., Zhang, J. (2009). All Digital Phase Detection and Tracking Method to Subdivide the Grating Moiré Fringe Signal. International Asia Conference on Informatics in Control, Automation and Robotics, Bangkok, 469-472.
  • [7] Angrisani, L., Capriglione, D., Cerro, G., Ferrigno, L., Miele, G. (2017). Analysis of different wavelet segmentation methods for frequency-domain energy detection based spectrum sensing. IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, 1-6.
  • [8] Feng, Yingqiao, et al. (2013). Interpolation Error Correction of Moiré Fringe Photoelectric Signals in the Approximate Form of Triangle Wave. Acta Optica Sinica, 33(8), 106-110.
  • [9] Liu, B., Li, J. (2011). Research on signal subdivision of grating sensor. Proc. of 2011 6th International Forum on Strategic Technology, Harbin, Heilongjiang, 1235-1238.
  • [10] Lv, M., Guo, Q., Zhang, C. (2010). Noise filtering for Moire Fringe signals based on variable step size adaptive neural network algorithm. Proc. of SPIE - The International Society for Optical Engineering, 7656(19), 76567L-76567L-7.
  • [11] Angrisani, L., Capriglione, D., Cerro, G., Ferrigno, L., Miele, G. (2017). Analysis of different wavelet segmentation methods for frequency-domain energy detection based spectrum sensing. IEEE International Instrumentation and Measurement Technology Conference.
  • [12] Dragan, Ž., Milan, S., Zivko, K., Dragan, D., Vladimir, D. (2018). Generation of Long-time Complex Signals for Testing the Instruments for Detection of Voltage Quality Disturbances. Measurement Science Review, 18(2), 41-51.
  • [13] Emura, T., Wang, L. (2000). A high-resolution interpolator for incremental encoders based on the quadrature PLL method. IEEE Transactions on Industrial Electronics, 47(1), 84-90.
  • [14] Jelena, J., Dragan, Uglješa, J. (2018). An Improved Linearization Circuit used for Optical Rotary Encoders. Measurement Science Review, 17(5), 241-249.
  • [15] Volder, J.E. (1959). The CORDIC trigonometric computing technique. IRE Transactions on Electronic Computers, 8(3), 330-334.
  • [16] Walther, J.S. (1971). A unified algorithm for elementary functions. Spring Joint Computer Conf., 18(20), 379-385.
  • [17] Aggarwal, S., Meher, P.K. (2016). Concept, Design, and Implementation of Reconfigurable CORDIC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(4), 1588-1592.
  • [18] Hu, Y.H. (1992). The quantization effects of the CORDIC algorithm. IEEE Transations on Signal Proc., 40(4), 834-844.
  • [19] Shanying, X., Weiming, Q., Xiaoning, C. (2010). Implement of Arcsine Function Based on FPGA. Chinese Journal of Electron Devices, 33(3), 344-347.
  • [20] Rajkumar, R. (2016). Reliable Hardware Architectures of the CORDIC Algorithm With a Fixed Angle of Rotations. IEEE Circuits and Systems Society, 64(8), 972-976.
  • [21] Mazenc, C., Merrheim, X., Muller, J.M. (1993). Computing functions arccos and arcsin using CORDIC. IEEE Transactions on Computers, 42(1), 118-122.
  • [22] Liu, X., Xie, Y., Chen, H. (2015). Implementation on FPGA for CORDIC-based Computation of Arcsine and Arccosine. IET International Radar Conference 2015.
Uwagi
EN
1. This research was financially supported by the project of the National Key R&D Program of China (2017YFF0204901), the research project of General Administration of Quality Supervision, Inspection and Quarantine of PRC (2016QK189).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4c86d7c-5791-4ce8-b879-fe38bcbc14eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.