PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Emerging trends in GIS and remote sensing technologies for environmental monitoring: innovations, applications, and future directions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nowe trendy w technologiach GIS i teledetekcji w zakresie monitorowania środowiska: innowacje, zastosowania i przyszłe kierunki rozwoju
Języki publikacji
EN
Abstrakty
EN
The escalating challenges of climate change, biodiversity loss, land degradation, and urban expansion have amplified the need for reliable, high-resolution, and timely environmental data. Geographic Information Systems (GIS) and Remote Sensing (RS) technologies have become indispensable tools for environmental monitoring, enabling the systematic collection, analysis, and visualization of spatial data across diverse ecosystems. This review synthesizes recent innovations in GIS and RS that are transforming environmental surveillance and decision-making. Key developments include the integration of artificial intelligence (AI) and machine learning (ML) for enhanced image classification, cloud-based platforms like Google Earth Engine (GEE) for scalable analysis, and the increasing use of Unmanned Aerial Vehicles (UAVs) and hyperspectral sensors for high-resolution monitoring. Furthermore, the convergence of geospatial analytics with big data, the Internet of Things (IoT), and participatory approaches such as citizen science is expanding the accessibility and impact of environmental data. Case studies from Africa, Asia, and global initiatives highlight practical applications in land use change detection, water resource assessment, hazard risk mapping, urban heat island analysis, and biodiversity conservation. While the potential of these tools is vast, persistent challenges include data interoperability, technical capacity gaps, policy integration barriers, and ethical concerns related to surveillance and data equity. This review calls for greater investment in open-source tools, interdisciplinary collaboration, and inclusive data governance to realize the full potential of GIS and RS in achieving environmental resilience and sustainability. Future directions emphasise real-time monitoring, ethical frameworks, and the democratisation of spatial intelligence.
PL
Rosnące wyzwania związane ze zmianami klimatu, utratą bioróżnorodności, degradacją gleby i ekspansją miast zwiększyły zapotrzebowanie na wiarygodne, wysokiej rozdzielczości i aktualne dane środowiskowe. Technologie systemów informacji geograficznej (GIS) i teledetekcji (RS) stały się niezbędnymi narzędziami do monitorowania środowiska, umożliwiając systematyczne gromadzenie, analizę i wizualizację danych przestrzennych w różnych ekosystemach. Niniejszy przegląd syntetyzuje najnowsze innowacje w dziedzinie GIS i RS, które przekształcają nadzór nad środowiskiem i proces decyzyjny. Kluczowe osiągnięcia obejmują integrację sztucznej inteligencji (AI) i uczenia maszynowego (ML) w celu ulepszonej klasyfikacji obrazów, platformy chmurowe, takie jak Google Earth Engine (GEE), do skalowalnej analizy, oraz coraz częstsze wykorzystanie bezzałogowych statków powietrznych (UAV) i czujników hiperspektralnych do monitorowania o wysokiej rozdzielczości. Ponadto konwergencja analityki geoprzestrzennej z dużymi zbiorami danych, Internetem Rzeczy (IoT) i podejściami partycypacyjnymi, takimi jak nauka obywatelska, zwiększa dostępność i wpływ danych środowiskowych. Studia przypadków z Afryki, Azji i inicjatyw globalnych podkreślają praktyczne zastosowania w wykrywaniu zmian w użytkowaniu gruntów, ocenie zasobów wodnych, mapowaniu ryzyka zagrożeń, analizie miejskich wysp ciepła i ochronie bioróżnorodności. Chociaż potencjał tych narzędzi jest ogromny, wciąż istnieją wyzwania, takie jak interoperacyjność danych, luki w zasobach technicznych, bariery w integracji polityki oraz kwestie etyczne związane z nadzorem i równością danych. Niniejszy przegląd wzywa do zwiększenia inwestycji w narzędzia open source, współpracy interdyscyplinarnej i inkluzywnego zarządzania danymi, aby w pełni wykorzystać potencjał GIS i RS w osiąganiu odporności i zrównoważonego rozwoju środowiska. Przyszłe kierunki rozwoju kładą nacisk na monitorowanie w czasie rzeczywistym, ramy etyczne oraz demokratyzację inteligencji przestrzennej.
Rocznik
Tom
Strony
25--41
Opis fizyczny
Bibliogr. 92 poz.
Twórcy
  • Faculty of Environmental Engineering and Energy, Cracow University of Technology, Cracow, Poland
  • Okna Geoservices Nigeria Limited, Eket, Nigeria
Bibliografia
  • 1 Ibebuchi, C.C., Abu, I.O. Interpolation of environmental data using deep learning and model inference. Machine Learning Science and Technology, 2024; volume 5, no. 2:025046 (https://doi.org/10.1088/2632-2153/ad4b94).
  • 2 Mitchell, L.J., Williamson, B.J., Masden, E.A. Methods for highlighting ecological monitoring needs in data-sparse regions: a case study of impact assessment for multi-component infrastructure installations. Environmental Impact Assessment Review, 2024; volume 30, no. 105:107433 (https://doi.org/10.1016/j.eiar.2024.107433).
  • 3 Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., Zhang, L. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 2020; volume 27, no. 241:111716 (https://doi.org/10.1016/j.rse.2020.111716).
  • 4 Sani, S.A., Ibrahim, A., Musa, A.A., Dahiru, M., Baballe, M.A. Drawbacks of traditional environmental monitoring systems. Computer and Information Science, 2023; volume 30, no. 16(3):30 (https://doi.org/10.5539/cis.v16n3p30).
  • 5 Zhu, Y., Geiß, C., So, E. Image super-resolution with dense-sampling residual channel-spatial attention networks formulti-temporal remote sensing image classification. International Journal of Applied Earth Observation and Geoinformation, 2021; volume 20, no. 104:102543 (https://doi.org/10.1016/j.jag.2021.102543).
  • 6 Liu, D., Zheng, X., Wang, H. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecological Modelling, 2020; volume 7, no. 417:108924 (https://doi.org/10.1016/j.ecolmodel.2019.108924).
  • 7 Zhang, P., Wu, W., Xue, C., Shi, S., Su, F. A New Framework for Integrating DNN-Based Geographic Simulation Models within GISystems. ISPRS International Journal of Geo-Information, 2024; volume 14, no. 13(10):361 (https://doi.org/10.3390/ijgi13100361).
  • 8 Akiang, F.B., Nnaji, V.N., Opara, A.I., Agoha, C.C., Agbasi, O.E., Ulem, E.B., Njoku, J.O.. Geospatial and geo-electrical assessment of groundwater vulnerability and potential in parts of Cross River, Southern Nigeria. HydroResearch, 2024; volume 1 (https://doi.org/10.1016/j.hydres.2024.09.007).
  • 9 Okoli, E., Akaolisa, C.C.Z., Ubechu, B.O., Agbasi, O.E., Szafarczyk, A. Using VES and GIS-Based DRASTIC analysis to evaluate groundwater aquifer contamination vulnerability in Owerri, southeastern Nigeria. Ecological Questions, 2024; volume 18, no. 35(3), pp. 1–27 (https://doi.org/10.12775/eq.2024.031).
  • 10 Rowland, A., Ebuka, A.O. Assessing the Impact of Land Cover and Land Use Change on Urban Infrastructure Resilience in Abuja, Nigeria: A Case Study From 2017 To 2022. Structure and Environment, 2024; volume 29, no. 16(1), pp. 6–17 (https://doi.org/10.30540/sae-2024-002).
  • 11 Aziz, N.A., Alwan, I.A., Agbasi, O.E. Integrating remote sensing and GIS techniques for effective watershed management: a case study of Wadi Al-Naft Basins in Diyala Governorate, Iraq, using ALOS PALSAR digital elevation model. Applied Geomatics, 2023; volume 2, no. 16(1), pp. 67–76 (https://doi.org/10.1007/s12518-023-00540-9).
  • 12 Akaolisa, C.C., Agbasi, O.E., Etuk, S.E., Adewumi, R., Okoli, E.A. Evaluating the effects of real estate development in Owerri, Imo State, Nigeria: Emphasizing changes in Land Use/Land Cover (LULC). Journal of Landscape Ecology, 2023; volume 1, no. 16(2), pp. 98–113 (https://doi.org/10.2478/jlecol-2023-0012).
  • 13 Himeur, Y., Rimal, B., Tiwary, A., Amira, A. Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion, 2022; volume 25, no. 86–87, pp. 44–75 (https://doi.org/10.1016/j.inffus.2022.06.003).
  • 14 Alotaibi, E., Nassif, N. Artificial intelligence in environmental monitoring: in-depth analysis. Discover Artificial Intelligence, 2024; volume 18, no. 4(1) (https://doi.org/10.1007/s44163-024-00198-1).
  • 15 Gessa, A., Sancha, P. Environmental open data in Urban Platforms: An approach to the big data Life cycle. Journal of Urban Technology, 2019; volume 26, no. 27(1), pp. 27–45 (https://doi.org/10.1080/10630732.2019.1656934).
  • 16 Quamar, M.M., Al-Ramadan, B., Khan, K., Shafiullah, M., Ferik, S.E. Advancements and Applications of Drone-Integrated Geographic Information System Technology —A Review. Remote Sensing, 2023; volume 20, no. 15(20):5039 (https://doi.org/10.3390/rs15205039).
  • 17 Anderson, K., Griffiths, D., DeBell, L., Hancock, S., Duffy, J.P., Shutler, J.D., et al. A grassroots remote sensing toolkit using live coding, smartphones, kites and lightweight drones. PLoS ONE, 2016; volume 4, no. 11(5):e0151564 (https://doi.org/10.1371/journal.pone.0151564).
  • 18 Vasiliades, M.A., Hadjichambis, A.Ch., Paraskeva-Hadjichambi, D., Adamou, A., Georgiou, Y. A systematic literaturę review on the participation aspects of Environmental and Nature-Based Citizen Science initiatives. Sustainability, 2021; volume 3, no. 13(13):7457 (https://doi.org/10.3390/su13137457).
  • 19 Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L. Machine learning in geosciences and remote sensing. Geoscience Frontiers, 2015; volume 12, no. 7(1), pp. 3–10. (https://doi.org/10.1016/j.gsf.2015.07.003).
  • 20 Chen, H., Yang, L., Wu, Q. Enhancing land cover Mapping and Monitoring: an interactive and explainable machine learning approach using Google Earth engine. Remote Sensing, 2023; volume 18, no. 15(18):4585 (https://doi.org/10.3390/rs15184585).
  • 21 Janga, B., Asamani, G., Sun, Z., Cristea, N. A review of practical AI for remote sensing in Earth Sciences. Remote Sensing, 2023; volume 21, no. 15(16):4112 (https://doi.org/10.3390/rs15164112).
  • 22 Varma, B., Naik, N., Chandrasekaran, K., Venkatesan, M., Rajan, J. Forecasting Land-Use and Land-Cover change using hybrid CNN–LSTM model. IEEE Geoscience and Remote Sensing Letters, 2024; volume 1, no. 21, pp. 1–5 (https://doi.org/10.1109/lgrs.2024.3389671).
  • 23 Prokop, K., Połap, D., Włodarczyk-Sielicka, M., Połap, K., Jaszcz, A., Stateczny, A. Automated shoreline extraction process for unmanned vehicles via U-net with heuristic algorithm. Alexandria Engineering Journal, 2024; volume 5, no. 102, pp. 108–18 (https://doi.org/10.1016/j.aej.2024.05.104).
  • 24 Takhtkeshha, N., Mohammadzadeh, A., Salehi, B. A rapid Self-Supervised Deep-Learning-Based method for Post-Earthquake damage detection using UAV data (Case study: Sarpol-e Zahab, Iran). Remote Sensing, 2022; volume 26, no. 15(1), pp. 123 (https://doi.org/10.3390/rs15010123).
  • 25 Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 2020; volume 7, no. 164, pp. 152–70 (https://doi.org/10.1016/j.isprsjprs.2020.04.001).
  • 26 Amani, M., Ghorbanian, A., Ahmadi, S.A., Kakooei, M., Moghimi, A., Mirmazloumi, S.M. Google Earth Engine Cloud computing platform for remote sensing big data Applications: A Comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020; volume 1, no. 13, pp. 5326–5350 (https://doi.org/10.1109/jstars.2020.3021052).
  • 27 Gu, Q., Michanowicz, D.R., Jia, C. Developing a modular Unmanned aerial Vehicle (UAV) platform for air pollution profiling. Sensors, 2018; volume 10, no. 18(12):4363 (https://doi.org/10.3390/s18124363).
  • 28 Rahman, M.M., Siddique, S., Kamal, M., Rifat, R.H., Gupta, K.D. UAV (Unmanned Aerial Vehicle): diverse applications of UAV datasets in segmentation, classification, detection, and tracking. Algorithms, 2024; volume 23, no. 7(12), pp. 594 (https://doi.org/10.3390/a17120594).
  • 29 Han, S., Han, D. Enhancing Direct Georeferencing Using Real-Time Kinematic UAVs and Structure from Motion-Based Photogrammetry for Large-Scale Infrastructure. Drones, 2024; volume 5, no. 8(12) (https://doi.org/10.3390/drones8120736).
  • 30 Feng, X., He, L., Cheng, Q., Long, X., Yuan, Y. Hyperspectral and multispectral remote sensing image fusion based on endmember spatial information. Remote Sensing, 2020; volume 21, no. 12(6):1009 (https://doi.org/10.3390/rs12061009).
  • 31 Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R. Sousa, J.J. Hyperspectral Imaging: A review on UAVBased sensors, data processing and applications for agriculture and forestry. Remote Sensing, 2017, volume 30, no. 9(11):1110 (https://doi.org/10.3390/rs9111110).
  • 32 Sekertekin, A., Arslan, N. Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery – A case study at Tuzla geothermal region. Geothermics, 2018; volume 29, no. 78, pp. 243–254 (https://doi.org/10.1016/j.geothermics.2018.12.014).
  • 33 Chen, L., Mao, Y., Zhao, R. GIS application in environmental monitoring and risk assessment. 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), 2022; volume 22, pp. 908–917 (https://doi.org/10.1109/icgmrs55602.2022.9849269).
  • 34 Paul, K., Chatterjee, S.S., Pai, P., Varshney, A., Juikar, S., Prasad, V., Bhadra, B., Dasgupta, S. Viable smart sensors and their application in data driven agriculture. Computers and Electronics in Agriculture, 2022; volume 1, no. 198:107096 (https://doi.org/10.1016/j.compag.2022.107096).
  • 35 Govea; J., Gaibor-Naranjo, W., Sanchez-Viteri, S., Villegas-Ch, W. Integration of data and predictive models for the evaluation of air quality and noise in urban environments. Sensors, 2024; volume 5, no. 24(2):311 (https://doi.org/10.3390/s24020311).
  • 36 Rossetto, R., De Filippis, G., Borsi, I., Foglia, L., Cannata, M., Criollo, R., Vázquez-Suñé, E. Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management. Environmental Modelling & Software, 2018; volume 22, no. 107, pp. 210–230 (https://doi.org/10.1016/j.envsoft.2018.06.007).
  • 37 Castell, N., Kobernus, M., Liu, H.Y., Schneider, P., Lahoz, W., Berre, A.J., Noll, J. Mobile technologies and services for environmental monitoring: The Citi-Sense-MOB approach. Urban Climate, 2014; volume 12, no. 14, pp. 70–82 (https://doi.org/10.1016/j.uclim.2014.08.002).
  • 38 Amitrano, D., Di Martino, G., Guida, R., Iervolino, P., Iodice, A., Papa, M.N., Riccio, D., Ruelo, G. Earth Environmental Monitoring Using Multi-Temporal Synthetic Aperture Radar: A Critical Review of selected applications. Remote Sensing, 2021; volume 8, no. 13(4):604 (https://doi.org/10.3390/rs13040604).
  • 39 Santoro, M., Cartus, O. Research Pathways of Forest Above-Ground Biomass estimation based on SAR backscatter and interferometric SAR observations. Remote Sensing, 2018; volume 14, no. 10(4):608 (https://doi.org/10.3390/rs10040608).
  • 40 Park, S.E., Jung, Y.T., Kim, H.C. Monitoring permafrost changes in central Yakutia using optical and polarimetric SAR data. Remote Sensing of Environment, 2022; volume 28, no. 74:112989 (https://doi.org/10.1016/j.rse.2022.112989).
  • 41 Asori, M., Dogbey, E., Morgan, A.K., Ampofo, S.T., Mpobi, R.K.J., Katey, D. Application of GIS-based multi-criteria decision making analysis (GIS-MCDA) in selecting locations most suitable for siting engineered landfills – the case of Ashanti Region, Ghana. Management of Environmental Quality an International, 2022; volume 31, no. 33(3), pp. 800–826 (https://doi.org/10.1108/meq-07-2021-0159).
  • 42 Sánchez-Lozano, J.M., Bernal-Conesa, J.A. Environmental management of Natura 2000 network areas through the combination of Geographic Information Systems (GIS) with Multi-Criteria Decision Making (MCDM) methods. Case study in south-eastern Spain. Land Use Policy, 2017; volume 30, no. 63, pp. 86–97 (https://doi.org/10.1016/j.landusepol.2017.01.021).
  • 43 De Miguel González, R., Mar-Beguería, J., López, M.S., Kratochvíl, O. GIS-Based Dashboards as advanced geospatial applications for climate change education and teaching the future. ISPRS International Journal of Geo-Information, 2025; volume 18, no. 14(2):89 (https://doi.org/10.3390/ijgi14020089).
  • 44 Yan, J., Wang, L., Song, W., Chen, Y., Chen, X., Deng, Z. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2019; volume 7, no. 158, pp. 249–262 (https://doi.org/10.1016/j.isprsjprs.2019.10.003).
  • 45 Li, Z., Weng, Q., Zhou, Y., Dou, P., Ding, X. Learning spectral-indices-fused deep models for time-series land use and land cover mapping in cloud-prone areas: The case of Pearl River Delta. Remote Sensing of Environment, 2024; volume 4, no. 308:114190 (https://doi.org/10.1016/j.rse.2024.114190).
  • 46 Pavelka, K., Landa, M. Using Virtual and Augmented Reality with GIS Data. ISPRS International Journal of Geo-Information, 2024; volume 5, no. 13(7):241 (https://doi.org/10.3390/ijgi13070241).
  • 47 Fridhi, A., Frihida, A. GIS 3D and Science of Augmented Reality: Modeling a 3D geospatial environment. DOAJ (DOAJ: Directory of Open Access Journals), 2019; volume 1, (https://doaj.org/article/f677385247c74868b739ef-341f67196a).
  • 48 Lin, M.H., Lin, Y.T., Tsai, M.L., Chen, Y.Y., Chen, Y.C., Wang, H.C., Wang, C.K. Mapping land-use and land-cover changes through the integration of satellite and airborne remote sensing data. Environmental Monitoring and Assessment, 2024; volume 8, no. 96(3) (https://doi.org/10.1007/s10661-024-12424-5).
  • 49 Harish, B., Manjulavani, K., Shantosh, M., Supriya, V.M. Change detection of land use and land cover using remote sensing techniques. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 2017; volume 1, no. 64, pp. 2806–2810 (https://doi.org/10.1109/icpcsi.2017.8392231).
  • 50 Su, T., Zhang, S., Liu, T. Multi-Spectral image classification based on an Object-Based Active Learning approach. Remote Sensing, 2020; volume 4, no. 12(3), pp. 504 (https://doi.org/10.3390/rs12030504).
  • 51 Abera, T., Pellikka, P., Johansson, T., Mwamodenyi, J., Heiskanen, J. Towards tree-based systems disturbance monitoring of tropical mosaic landscape using a time series ensemble learning approach. Remote Sensing of Environment, 2023; volume 27, no. 299:113876 (https://doi.org/10.1016/j.rse.2023.113876).
  • 52 Mohamed, A., Worku, H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate, 2019; volume 3, no. 31:100545 (https://doi.org/10.1016/j.uclim.2019.100545).
  • 53 Rugel, G.M.V., Ochoa, D., Menendez, J.M., Van Coillie, F. Evaluating the applicability of global LULC products and an Author-Generated Phenology-Based Map for regional analysis: a case study in Ecuador’s ecoregions. Land, 2023: volume, 22, no. 12(5), pp. 1112 (https://doi.org/10.3390/land12051112).
  • 54 Vallet, A., Dupuy, S. Verlynde, M., Gaetano, R. Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning. Scientific Data, 2024; volume 23, no. 11(1) (https://doi.org/10.1038/s41597-024-03750-x).
  • 55 Lippe, M., Hilger, T., Sudchalee, S., Wechpibal, N., Jintrawet, A., Cadisch, G. Simulating Stakeholder-Based Land-Use change scenarios and their implication on Above-Ground carbon and Environmental Management in Northern Thailand. Land, 2017; volume 3, no. 6(4), pp. 85 (https://doi.org/10.3390/land6040085).
  • 56 Ross, M.R.V., Topp, S.N., Appling, A.P., Yang, X., Kuhn, C., Butman, D., Simard, M., Pavelsky, T.M. AquASAT: a data set to enable remote sensing of water quality for inland waters. Water Resources Research, 2019; volume 11, no. 55(11), pp. 10012–10025 (https://doi.org/10.1029/2019wr024883).
  • 57 Yang, H., Kong, J., Hu, H., Du, Y., Gao, M., Chen, F. A review of Remote sensing for water quality Retrieval: Progress and challenges. Remote Sensing, 2022; volume 7, no. 14(8), pp. 1770 (https://doi.org/10.3390/rs14081770).
  • 58 Yan, T., Shen, S.L., Zhou, A. Indices and models of Surface water quality assessment: Review and perspectives. Environmental Pollution, 2022; volume 15, no. 308, pp. 119611 (https://doi.org/10.1016/j.envpol.2022.119611).
  • 59 Verma, R., Sharif, M., Husain, A. Application of HEC-HMS for hydrological modeling of Upper Sabarmati River Basin, Gujarat, India. Modeling Earth Systems and Environment, 2022; volume 25, no. 8(4), pp. 5585–5593 (https://doi.org/10.1007/s40808-022-01411-9).
  • 60 Operational overview of the application of remote sensing and hydrography for coastal zone management. Journal of Earth and Environmental Sciences, 2020; volume 1 (https://doi.org/10.29011/2577-0640.100191).
  • 61 Sulaiman, N., Abdullah, N.M., Nazir, U., Ismail, M., Latib, S.K.K.A., Mahmud, N.P.N. Geographical Information System (GIS) and Remote sensing (RS) applications in Disaster Risk Reduction (DRR) in Malaysia. International Journal of Integrated Engineering, 2022; volume 6, no. 14(5) (https://doi.org/10.30880/ijie.2022.14.05.003).
  • 62 Nabukonde, A., Barakagira, A., Akwango, D. The Use of Geographical Information System (GIS) and Remote Sensing (RS) Technologies in Generation of Information Used to Mitigate Risks from Landslide Disasters: An Application Review. Archives of Current Research International, 2023; volume 8, no. 23(2), pp. 43–49 (https://doi.org/10.9734/acri/2023/v23i2558).
  • 63 Joiner, J., Yoshida, Y., Anderson, M., Holmes, T., Hain, C., Reichle, R., koster, R., Middleton, E., Zeng, F.W. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sensing of Environment, 2018; volume 25, no. 219, pp. 339–352 (https://doi.org/10.1016/j.rse.2018.10.020).
  • 64 Chaabane, F.Z., Lamine, S., Guettouche, M.S., Bachari, N.E.I., Hallal, N. Landslide Risk Assessments through Multicriteria Analysis. ISPRS International Journal of Geo-Information, 2024; volume 25, no. 13(9), pp. 303 (https://doi.org/10.3390/ijgi13090303).
  • 65 Whitehurst, D., Joshi, K., Kochersberger, K., Weeks, J. Post-Flood analysis for damage and restoration assessment usingdrone imagery. Remote Sensing, 2022; volume 4, no. 14(19), pp. 4952 (https://doi.org/10.3390/rs14194952).
  • 66 Xia, H., Chen, Y., Song, C., Li, J., Quan, J., Zhou, G. Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature. Remote Sensing of Environment, 2022; volume 8, no. 273:112972 (https://doi.org/10.1016/j.rse.2022.112972).
  • 67 De Almeida, C.R., Teodoro, A.C., Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 2021; volume 9, no. 8(10), pp. 105 (https://doi.org/10.3390/environments8100105).
  • 68 Leitão, P.J., Santos, M.J. Improving models of species Ecological niches: A remote sensing overview. Frontiers in Ecology and Evolution, 2019; volume 29, no. 7 (https://doi.org/10.3389/fevo.2019.00009).
  • 69 Zhang, X., Zhou, Y., Peng, P., Wang, G. A novel multimodal species distribution model fusing remote sensing images and environmental features. Sustainability, 2022; volume 28, no. 14(21):14034 (https://doi.org/10.3390/su142114034).
  • 70 Reiche, J., Mullissa, A., Slagter, B., Gou, Y., Tsendbazar, N.E., Odongo-Braun, C., Vollrath, A., Weisse, M.J., Stolle, F., Pickens, A. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environmental Research Letters, 2021; volume 19, no. 6(2):024005 (https://doi.org/10.1088/1748-9326/abd0a8).
  • 71 Adams, C.E., Garcia-Carreras, L. Detection of Land-Use Change and Rapid Recovery of Vegetation after Deforestation in the Congo Basin. Earth Interactions, 2023; volume 1, no. 27(1) (https://doi.org/10.1175/ei-d-22-0020.1).
  • 72 Kowler, L.F., Pratihast, A.K., Del Arco, A.P.O., Larson, A.M., Braun, C., Herold, M. Aiming for sustainability and scalability: community engagement in forest payment schemes. Forests, 2020; volume 15, no. 11(4), pp. 444 (https://doi.org/10.3390/f11040444).
  • 73 Abdourahamane, Z.S., Garba, I., Boukary, A.G., Mirzabaev, A. Spatiotemporal characterization of agricultural drought in the Sahel region using a composite drought index. Journal of Arid Environments, 2022; volume 16, no. 204:104789 (https://doi.org/10.1016/j.jaridenv.2022.104789).
  • 74 Rembold, F., Meroni, M., Urbano, F., Csak, G., Kerdiles, H., Perez-Hoyos, A., Lemoine, G., Leo, O., Negre, T. ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agricultural Systems, 2018; volume 15, no. 168, pp. 247–257 (https://doi.org/10.1016/j.agsy.2018.07.002).
  • 75 Uddin, K., Matin, M.A., Meyer, F.J. Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh. Remote Sensing, 2019; volume 3, no. 11(13), pp. 1581 (https://doi.org/10.3390/rs11131581).
  • 76 Rehman, A.U., Lyche, T., Awuah-Offei, K., Nadendla, V.S.S. Effect of text message alerts on miners evacuation decisions. Safety Science, 2020; volume 17, no. 130:104875 (https://doi.org/10.1016/j.ssci.2020.104875).
  • 77 Polo, M.J. Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region: A Decade of Experience from SERVIR. Edited by Birendra Bajracharya, Rajesh Bahadur Thapa, and Mir A. Matin. Mountain Research and Development, 2022; volume 17, no. 42(2) (https://doi.org/10.1659/mrd.mm273.1).
  • 78 Meyer, R., Davies, N., Pitz, K.J., Meyer, C., Samuel, R., Anderson, J., Appeltans, W., Barker, K., Chavez, F.P., Duffy, J.E., Goodwin, K.D., Hudson, M., Hunter, M.E., Karstensen, J., Laney, C.M., Leinen, M., Mabee, P., Macklin, J.A., Muller-Karger, F., Pade, N., Pearlman, J., Phillips, L., Provoost, P., Santi, I., Schigel, D., Schriml, L.M., Soccodato, A., Suominen, S., Thibault, K.M., Ung, V., de Kamp, J., Wallis, E., Walls, R., Buttigieg, P.L. The founding charter of the Omic Biodiversity Observation Network (Omic BON). GigaScience, 2022; volume 28, no. 12 (https://doi.org/10.1093/gigascience/giad068).
  • 79 Himeur, Y., Rimal, B., Tiwary, A., Amira, A. Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion, 2022; volume 25, no. 86–87, pp. 44–75 (https://doi.org/10.1016/j.inffus.2022.06.003).
  • 80 Safonova, A., Ghazaryan, G., Stiller, S., Main-Knorn, M., Nendel, C., Ryo, M. Ten deep learning techniques to address small data problems with remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2023; volume 18, no. 125:103569 (https://doi.org/10.1016/j.jag.2023.103569).
  • 81 Zhang, Z., Zhang, Q., Hu, X., Zhang, M., Zhu, D. On the automatic quality assessment of annotated sample data for object extraction from remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2023; volume 1, no. 201, pp. 153–73 (https://doi.org/10.1016/j.isprsjprs. 2023.05.026).
  • 82 Downes, J., Bruce, D., Da Silva, G.M., Hesp, P.A. Optimising Satellite-Derived Bathymetry Using Optical Imagery over the Adelaide Metropolitan Coast. Remote Sensing, 2025; volume 28, no. 17(5), pp. 849 (https://doi.org/10.3390/rs17050849).
  • 83 Lagunes-Gómez, I., Hernández-Orduña, M., Murrieta-Galindo, R., Hernández-Pitalua, D., Mayorga-Cruz, D. Spatial Analysis of the Empirical Behavior of Municipal Institutional Capacity for the Formulation of Sustainable Growth Management Strategies with a Regional Focus: State of Veracruz, Mexico. Sustainability, 2022; volume 10, no. 4(4), pp. 2000 (https://doi.org/10.3390/su14042000).
  • 84 Pandey, V., Kipf, A., Neumann, T., Kemper, A. How good are modern spatial analytics systems? Proceedings of the VLDB Endowment, 2018; volume 1, no. 11(11), pp. 1661–1673 (https://doi.org/10.14778/3236187.3236213).
  • 85 Minde, J.M., Gerlak, A.K., Colella, T., Murveit, A.M. Re-examining geospatial online participatory Tools for environmental Planning. Environmental Management, 2024; volume 15, no. 73(6), pp. 1276–1292 (https://doi.org/10.1007/s00267-024-01973-7).
  • 86 Scott, G., Rajabifard, A. Sustainable development and geospatial information: a strategic framework for integrating a global policy agenda into national geospatial capabilities. Geo-spatial Information Science, 2017; volume 3, no. 20(2), pp. 59–76 (https://doi.org/10.1080/10095020.2017.1325594).
  • 87 Qwaider, S., Al-Ramadan, B., Shafiullah, M., Islam, A., Worku, M.Y. GIS-Based Progress Monitoring of SDGs towards Achieving Saudi Vision 2030. Remote Sensing, 2023; volume 17, no. 15(24), pp. 5770 (https://doi.org/10.3390/rs15245770).
  • 88 Akanbi, A., Masinde, M. A distributed stream processing middleware framework for Real-Time analysis of heterogeneous data on big data platform: case of environmental monitoring. Sensors, 2020; volume 3, no. 20(11), pp. 3166 (https://doi.org/10.3390/s20113166).
  • 89 Chandra, G.R., Bhatia, S. Issues and concerns in the field of remote sensing. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 2020; volume 1, pp. 654–658 (https://doi.org/10.1109/icrito48877.2020.9197901).
  • 90 Lombardo, L., Corbellini, S., Parvis, M., Elsayed, A., Angelini, E., Grassini, S. Wireless sensor network for distributed environmental monitoring. IEEE Transactions on Instrumentation and Measurement, 2017; volume 11, no. 67(5), pp. 1214–1222 (https://doi.org/10.1109/tim.2017.2771979).
  • 91 Fraisl, D., Hager, G., Bedessem, B., Gold, M., Hsing, P.Y., Danielsen, F., Hitchcock, C.B., Hulbert, J.M., Piera, J., Spiers, H., Thiela, M., Hakla, M. Citizen science in environmental and ecological sciences. Nature Reviews Methods Primers, 2022; volume 25, no. 2(1) (https://doi.org/10.1038/s43586-022-00144-4).
  • 92 Spaans, R.H., Drumond, B., Van Daalen, K.R., Vitor, A.C.R., Derbyshire, A., Da Silva, A., Lana, R.M., Vega, M.S., Carrasco-Escobar, G., Escada, M.I.S., Codeço, C., Lowe, R. Ethical considerations related to drone use for environment and health research: A scoping review protocol. PLoS ONE, 2024; volume 31, no. 19(1):e0287270 (https://doi.org/10.1371/journal.pone.0287270).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4c465b5-61a9-4b5f-8e4a-58a9eaccd957
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.