PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Biomechanical comparison between the custom-made mandibular condyle prosthesis and total temporomandibular joint prosthesis in finite element analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to compare the biomechanical behavior of the custom-made mandibular condyle prosthesis and total TMJ prosthesis. Methods: Three models of one beagle dog, the condyle prosthesis (Model 1, replacing the right condyle only), the TMJ prosthesis (model 2, replacing the whole right TMJ) and the intact TMJ (model 3) were established, and the mechanical responses under muscle forces loading were analyzed using finite element method. Results: Models 1 and 3 had the similar stress distribution on the right disc, which suggested that the condyle prosthesis did not change the disc stress so much when the muscle forces were applied. The stress of the right TMJ prosthesis in Model 2 was larger than both Models 1 and 3, and the stress of the contralateral TMJ reduced by 12% in Model 2. The anterior border of the condyle seemed to be a stress concentration region, not only for the intact condyle, but also for the condyle prosthesis and the total TMJ prosthesis. Conclusions: The total TMJ prosthesis changed the biomechanical balance of the bilateral TMJ. When the condyle prosthesis iss applied, the custom-made profile is recommended.
Rocznik
Strony
151--160
Opis fizyczny
Bibliogr. 29 poz., tab., rys.
Twórcy
  • National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
autor
  • Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
autor
  • Beijing Machine and Equipment Institute, Beijing, China
autor
  • National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.
autor
  • Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
Bibliografia
  • [1] BEEK M., AARNTS M.P., KOOLSTRA J.H., FEILZER A.J., van EIJDEN T.M., Dynamic properties of the human temporo mandibular joint disc, J. Dent. Res., 2001, 80, 876–880.
  • [2] CONCI R.A., TOMAZI F.H., NORITOMI P.Y., DA S.J., FRITSCHER G.G., HEITZ C., Comparison of Neck Screw and Conventional Fixation Techniques in Mandibular Condyle Frac tures Using 3-Dimensional Finite Element Analysis, J. Oral Maxillofac. Surg., 2015, 73, 1321–1327.
  • [3] DEL P.A., DOBLARE M., 3D finite element simulation of the opening movement of the mandible in healthy and pathologic situations, J. Biomech. Eng., 2006, 128, 242–249.
  • [4] DRIEMEL O., BRAUN S., MULLER-RICHTER U.D. et al., Historical development of alloplastic temporomandibular joint replace ment after 1945 and state of the art, Int. J. Oral Maxillofac. Surg., 2009, 38, 909–920.
  • [5] FRICTON J.R., LOOK J.O., SCHIFFMAN E., SWIFT J., Long-term study of temporomandibular joint surgery with alloplastic implants compared with nonimplant surgery and nonsurgical rehabilitation for painful temporomandibular joint disc dis placement, J. Oral Maxillofac. Surg., 2002, 60, 1400–1412.
  • [6] GUARDA-NARDINI L., MANFREDINI D., FERRONATO G., Tem poromandibular joint total replacement prosthesis: current knowledge and considerations for the future, Int. J. Oral Max illofac. Surg., 2008, 37, 103–110.
  • [7] HATTORI-HARA E., MITSUI S.N., MORI H. et al., The influence of unilateral disc displacement on stress in the contralateral joint with a normally positioned disc in a human temporoman dibular joint: an analytic approach using the finite element method, J. Craniomaxillofac. Surg., 2014, 42, 2018–2024.
  • [8] HU K., ZHOU J., LIU H., HU M., WANG D., RONG Q., FANG J., Development of the three-dimensional finite element model of adult dog temporomandibular joint in functional loading, Acad. J. PL A Postgrad. Med. Sch., 1997, 167–169.
  • [9] JEON D.M., JUNG W.S., MAH S.J., KIM T.W., AHN S.J., The effects of TMJ symptoms on skeletal morphology in ortho dontic patients with TMJ disc displacement, Acta Odontol. Scand., 2014, 72, 776–782.
  • [10] JIBIKI M., SHIMODA S., NAKAGAWA Y., KAWASAKI K., ASADA K., ISHIBASHI K., Calcifications of the disc of the temporoman dibular joint, J. Oral Pathol. Med., 1999, 28, 413–419.
  • [11] KAWAHARA H., KAWAHARA D., HAYAKAWA M., TAMAI Y., KUREMOTO T., MATSUDA S., Osseointegration under imme diate loading: biomechanical stress–strain and bone forma tion – resorption, Implant Dent., 2003, 12, 61–68.
  • [12] KOOLSTRA J.H., van EIJDEN T.M., Consequences of vis coelastic behavior in the human temporomandibular joint disc, J. Dent. Res., 2007, 86, 1198–1202.
  • [13] KORIOTH T.W., ROMILLY D.P., HANNAM A.G., Three--dimensional finite element stress analysis of the dentate hu man mandible, Am. J. Phys. Anthropol., 1992, 88, 69–96.
  • [14] LIN A.W., VAPNIARSKY N., CISSELL D.D., VERSTRAETE F.J.M., LIN C.H., HATCHER D.C., ARZI B.. The Temporomandibular Joint of the Domestic Dog (Canis lupus familiaris) in Health and Disease, J. Comp. Path, 2018, 161, 55–67.
  • [15] MATSUMOTO R., IOI H., GOTO T.K. et al., Relationship between the unilateral TMJ osteoarthritis/osteoarthrosis, mandibular asymmetry and the EMG activity of the masticatory muscles: a retrospective study, J. Oral Rehabil., 2010, 37, 85–92.
  • [16] RAMOS A., MESNARD M., Christensen vs. Biomet Micro fixation alloplastic TMJ implant: Are there improvements? A numerical study, J. Craniomaxillofac. Surg., 2015, 43, 1398–1403.
  • [17] RAMOS A., MESNARD M., Comparison of load transfers in TMJ replacement using a standard and a custom-made tem poral component, J. Craniomaxillofac. Surg., 2014, 42 (8), 1766–1772.
  • [18] RAMOS A., MESNARD M., RELVAS C., COMPLETO A., SIMOES J.A., Theoretical assessment of an intramedullary condylar component versus screw fixation for the condylar component of a hemiarthroplasty alloplastic TMJ replacement system, J. Craniomaxillofac. Surg., 2014, 42, 169–174.
  • [19] SANOVICH R., MEHTA U., ABRAMOWICZ S., WIDMER C., DOLWICK M.F., Total alloplastic temporomandibular joint reconstruction using Biomet stock prostheses: the University of Florida experience, Int. J. Oral Maxillofac. Surg., 2014, 43, 1091–1095.
  • [20] SHU J., WANG Q., MA H., TENG H., ZHENG T., LIU Z., Biome chanical study on the changes of stress in temporomandibu lar 2 joints after the orthognathic surgery in patients with mandibular 3 prognathism: a 3D finite element study, Acta Bioeng. Biomech., 2020, 22 (2), 155–163.
  • [21] TANAKA E., del POZO R., TANAKA M., TANNE K., Three dimensional finite element analysis of human temporoman dibular joint with and without disc displacement during jaw opening, Med. Eng. Phys., 2004, 26 (6), 503–511.
  • [22] TANAKA E., van EIJDEN T., Biomechanical behavior of the temporomandibular joint disc, Crit. Rev. Oral Biol. Med., 2003, 14, 138–150.
  • [23] TANNE K., TANAKA E., SAKUDA M., The elastic modulus of the temporomandibular joint disc from adult dogs, J. Dent. Res., 1991, 70, 1545–1548.
  • [24] TENG S., XU Y., CHENG M., LI Y., Biomechanical properties and collagen fiber orientation of temporomandibular joint discs in dogs: 2. Tensile mechanical properties of the discs, J. Craniomandib. Disord., 1991, 5, 107–114.
  • [25] Van LOON J.P., de BONT G.M., BOERING G., Evaluation of temporomandibular joint prostheses: review of the literature from 1946 to 1994 and implications for future prosthesis de signs, J. Oral Maxillofac. Surg., 1995, 53, 984–997.
  • [26] VEGA L.G., GONZALEZ-GARCIA R., LOUIS P.J., Recon struction of acquired temporomandibular joint defects, Oral Maxillofac. Surg. Clin. North Am., 2013, 25, 251–269.
  • [27] WESTERMARK A., HEDEN P., AAGAARD E., CORNELIUS C.P., The use of TMJ Concepts prostheses to reconstruct patients with major temporomandibular joint and mandibular defects, Int. J. Oral Maxillofac. Surg., 2011, 40, 487–496.
  • [28] XU X., LUO D., GUO C., RONG Q., A custom-made temporoman dibular joint prosthesis for fabrication by selective laser melting: Finite element analysis, Med. Eng. Phys., 2017, 46, 1–11.
  • [29] XU X., RONG Q., GUO C., Study of protection factors of skull base with loaded mandible, China J. Oral Maxillofac. Surg., 2011, 1, 1–7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4c2bcfd-e1ce-4a4f-91bb-38e2d8bed436
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.