PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life cycle energy consumption and CO2 emissions of different car types

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, the energy consumption and emissions of gasoline cars, battery electric cars, fuel cells electric (FCE) cars, compressed naturel gas (CNG) cars, liquid propane-butane gas (LPG) cars, etc., during their life cycles are presented. A set of flow charts presenting the production of cars and used fuel/energy is developed. These charts and the latest data for electricity production emission factor and raw materials prices are used. A comparative analysis is done. Results for primary energy and carbon emissions are presented in graphical form. They show the most economical and ecological car decisions.
Czasopismo
Rocznik
Strony
101--111
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • University of Ruse; Studentska 8, 7017 Ruse, Bulgaria
autor
  • University of Ruse; Studentska 8, 7017 Ruse, Bulgaria
  • University of Ruse; Studentska 8, 7017 Ruse, Bulgaria
  • University of Ruse; Studentska 8, 7017 Ruse, Bulgaria
Bibliografia
  • 1. Evtimov, I. & Ivanov, R. & Stanchev, H. & Kadikyanov, G. & Staneva, G. & Sapundzhiev, M. Energy efficiency and ecological impact of the vehicles. In: Sladkowski, A. (ed.) Ecology in Transport: Problems and Solutions. Springer Nature Switzerland AG 2020. P. 169-250. ISBN: 978- 3-030-42322-3.
  • 2. Moore, C. & Brown, S. & MacDonald, P. & Ewen, M. & Broadbent, H. European Electricity Review 2022. 33 p. Available at: https://ember-climate.org/app/uploads/2022/02/Report-EER.pdf.
  • 3. Climate change effects on the land. Research Report 378. NZ Transport Agency. 2009. Available at: https://www.nzta.govt.nz/resources/research/reports/378/.
  • 4. Del Duce, A. & Egede, P. & Öhlschläger, G. & Dettmer, T. & Althaus, H. & Bütler, T. & Szczechowicz, E. Guidelines for the LCA of electric vehicles, 2013. Available at: http://www.elcar- project.eu/fileadmin/dokumente/Guideline_versions/eLCAr_guidelines.pdf.
  • 5. Energy consumption of full electric vehicles. Available at: https://ev-database.org/cheatsheet/energyconsumption-electric-car.
  • 6. EU renewables overtake fossil fuels. Available at: https://ember-climate.org/insights/research/eu-power-sector-2020/.
  • 7. Energy production, 2005 and 2015 (million tonnes of oil equivalent). Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Energy_production,_2005_and_2015_(million_tonnes_of_oil_equiv alent)_YB17.png.
  • 8. Share of electricity from renewable sources 2020. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Table_2_share_of_electricity_from_renewable_sources_2020.PNG.
  • 9. Zhang, H. & Zhao, F. & Hao, H. & Liu, Z. Comparative analysis of life cycle greenhouse gas emission of passenger cars: A case study in China. Energy. 2023. Vol. 265. No. 126282.
  • 10. Ternel, C. &, Bouter, A. & Melgar, J. Life cycle assessment of mid-range passenger cars powered by liquid and gaseous biofuels: Comparison with greenhouse gas emissions of electric vehicles and forecast to 2030. Transportation Research Part D. 2021. Vol. 97. No. 102897.
  • 11. Greenhouse gas emission intensity of electricity generation in Europe. European Environment Agency. Available at: https://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-3/assessment.
  • 12. ICCT LCA study finds only battery and hydrogen fuel-cell EVs have potential to be very low-GHG passenger vehicle pathways. Green Car Congress. Energy, technologies, issues and policies for sustainable mobility. 2021. Available at: https://www.greencarcongress.com/2021/07/20210721- icct.html.
  • 13. Buberger, J. & Kersten, A. & Kuder, M. & Eckerle, R. & Weyh, T. & Thiringer, T. Total CO2- equivalent life-cycle emissions from commercially available passenger cars. Renewable and Sustainable Energy Reviews. 2022. Vol. 159. No. 112158.
  • 14. Renewable energy statistics. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Wind_and_water_provide_most_renewable_electrici ty.3B_solar_is_the_fastest-growing_energy_source.
  • 15. Steps Toward Carbon-Free Transportation. 2016. Frontier Group. Available at: https://uspirg.org/sites/pirg/files/reports/Frontier%20Group%20-%2050%20Steps%202016%5B1%5D_0.pdf.
  • 16. The European Power Sector in 2020. An analysis by Agora Energiewende. January 2021. Available at: https://ember-climate.org/app/uploads/2022/01/European-Power-Sector-in-2020.pdf.
  • 17. Urban Transport and Climate Change. Deutsche Gesellschaft fur Internationale Zusammenarbeit. 2014.
  • 18. 2020: ВЕИ имат 37% дял в брутното електропотребление на ЕС. Евростат. 2020. Available at: https://www.emi-bg.com/2020-%D0%B2%D0%B5%D0%B8. [In Bulgarian: 2020: RES have 37% of total energy consumption in Europe].
  • 19. 25% of EU electricity production from nuclear sources. Available at: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220111-1.
  • 20. ConocoPhillips. Value chain methane loss update. Review of publicly available studies. 2015. Available at: http://static.conocophillips.com/files/resources/methanestudies112015.pdf.
  • 21. Kleinberg, R.L. The Global Warming Potential is Inconsistent with the Physics of Climate Change and Misrepresents the Effects of Policy Interventions. Boston University Institute for Sustainable Energy. 2020. Available at: https://www.bu.edu/igs/files/2020/12/Kleinberg-AGU-Poster-Dec-2020-201119-BU.pdf.
  • 22. Powell, T. Methane’s 20- and 100-year climate effect is like ‘CO2 on steroids’. Sightline Institute.
  • 2019. Available at: https://www.sightline.org/b2019/02/12/methane-climate-change-co2-on- steroids/.
  • 23. Методика за определяне интензитета на емисиите на парникови газове от целия жизнен цикъл на горивата и енергията от небиологичен произход в транспорта. Министерство на околната среда и водите, Заповед № РД - 635/29.09.2017 г. [In Bulgarian: Metodoligy for Greenhouse gases emission density estimation for whole life cycle of the non bilogycal fuels in transport. Ministry of environment and water, Reg. № РД - 635/29.09.2017].
  • 24. Stolzenburga, K. & et all. Efficient liquefaction of hydrogen: results of the IDEALHY project. In: XXth energie - symposium. Stralsund. 7-9 November 2013. 8 p.
  • 25. Macher, G. & Brenner, E. & Messnarz, R. & Ekert, D. & Stolfa, J. & Stolfa, S. & Niemann, J. & Fussenecker, C. & Schoening, M. & Paul, A. & Pavlov, N. & Gigov, B. & Pavlova, M. A study of electric powertrain engineering - its requirements and stakeholders perspectives. Communications in Computer and Information Science. 2020. Vol. 1251. P. 396-407.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4c0abf8-c264-4740-98bd-2459942d2ff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.