Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Predictive maintenance is very important for effective prevention of failures in an industry. The present paper describes a case study where a wood chip pump system was analyzed, and a predictive model was proposed. An Ishikawa diagram and FMECA are used to identify possible causes for system failure. The Chip Wood has several sensors installed to monitor the working conditions and system state. The authors propose a variation of exponential smoothing technique for short time forecasting and an artificial neural network for long time forecasting. The algorithms were integrated into a dashboard for online condition monitoring, where the users are alerted when a variable is determined or predicted to get out of the expected range. Experimental results show prediction errors in general less than 10 %. The proposed technique may be of help in monitoring and maintenance of the asset, aiming at greater availability.
Czasopismo
Rocznik
Tom
Strony
33--41
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- CISE - Electromechatronic Systems Research Centre, University of Beira Interior, Calçada Fonte do Lameiro,62001-001 Covilhã, Portugal
- EIGeS - Research Centre in Industrial Engineering, Management and Sustainability, Lusófona University, Campo Grande, 376, 1749-024 Lisboa, Portugal
autor
- Polytechnic of Coimbra – ISEC, Quinta da Nora, 3030-199 Coimbra, Portugal
- University of Coimbra, CEMMPRE - Centre for Mechanical Engineering, Materials and Processes, 3030-788 Coimbra, Portugal
autor
- Polytechnic of Coimbra – ISEC, Quinta da Nora, 3030-199 Coimbra, Portugal
autor
- EIGeS - Research Centre in Industrial Engineering, Management and Sustainability, Lusófona University, Campo Grande, 376, 1749-024 Lisboa, Portugal
autor
- CISE - Electromechatronic Systems Research Centre, University of Beira Interior, Calçada Fonte do Lameiro,62001-001 Covilhã, Portugal
Bibliografia
- 1. Balduíno M, Torres Farinha J, Marques Cardoso A. Production Optimization versus Asset Availability – a Review. WSEAS Transactions on Systems and Control 2020; 15: 320–332, https://doi.org/10.37394/23203.2020.15.33.
- 2. Barata J. A Systematic Approach to Design Product Traceability in Industry 4.0: Insights from the Ceramic Industry. [https://www.researchgate.net/publication/319998541_A_Systematic_Approach_to_Design_Product_Traceability_in_Industry_40_Insights_from_the_Ceramic_Industry]
- 3. Berger R, Benbow D, Ahmad Elshennawy, Walker H. The Certified Quality Engineer Handbook, Second Edition. Faculty and Staff Books 2006.
- 4. Cachada A, Barbosa J, Leitño P et al. Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), 2018; 1: 139–146, https://doi.org/10.1109/ETFA.2018.8502489.
- 5. Cahyana R. A preliminary investigation of information system using Ishikawa diagram and sectoral statistics. IOP Conference Series: Materials Science and Engineering 2018; 434: 012050, https://doi.org/10.1088/1757-899X/434/1/012050.
- 6. Compare M, Baraldi P, Zio E. Challenges to IoT-Enabled Predictive Maintenance for Industry 4.0. IEEE Internet of Things Journal 2020; 7(5): 4585–4597, https://doi.org/10.1109/JIOT.2019.2957029.
- 7. Daily J, Peterson J. Predictive Maintenance: How Big Data Analysis Can Improve Maintenance. In Richter K, Walther J (eds): Supply Chain Integration Challenges in Commercial Aerospace, Cham, Springer International Publishing: 2017: 267–278, https://doi.org/10.1007/978-3-319-46155-7_18.
- 8. Efthymiou K, Papakostas N, Mourtzis D, Chryssolouris G. On a Predictive Maintenance Platform for Production Systems. Procedia CIRP 2012; 3: 221–226, https://doi.org/10.1016/j.procir.2012.07.039.
- 9. Farinha J M T. Asset Maintenance Engineering Methodologies. 1st edition. Boca Raton, FL, CRC Press: 2018.
- 10. Fernandes M, Canito A, Corchado J M, Marreiros G. Fault Detection Mechanism of a Predictive Maintenance System Based on Autoregressive Integrated Moving Average Models. In Herrera F, Matsui K, Rodríguez-González S (eds): Distributed Computing and Artificial Intelligence, 16th International Conference, Cham, Springer International Publishing: 2020: 171–180, https://doi.org/10.1007/978-3-030-23887-2_20.
- 11. Francis F, Mohan M. ARIMA Model based Real Time Trend Analysis for Predictive Maintenance. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 2019: 735–739, https://doi.org/10.1109/ICECA.2019.8822191.
- 12. Gbadamosi A-Q, Oyedele L O, Delgado J M D et al. IoT for predictive assets monitoring and maintenance: An implementation strategy for the UK rail industry. Automation in Construction 2021; 122: 103486, https://doi.org/10.1016/j.autcon.2020.103486.
- 13. Hashemian H M. State-of-the-Art Predictive Maintenance Techniques. IEEE Transactions on Instrumentation and Measurement 2011; 60(1): 226–236, https://doi.org/10.1109/TIM.2010.2047662.
- 14. Hegedűs C, Kosztyán Z T. 46 The consideration of measurement uncertainty and maintenance related decisions. Problems of Management in the 21stcentury 2011; 1: 46-59.
- 15. Heidarbeigi K, Ahmadi H, Omid M, Tabatabaeefar A. Evolving an Artificial Neural Network Classifier for Condition Monitoring of Massey Ferguson Tractor Gearbox. International Journal of Applied Engineering Research 2010; 5: 2097–2107.
- 16. Jun L, Huibin X. Reliability Analysis of Aircraft Equipment Based on FMECA Method. Physics Procedia 2012; 25: 1816–1822, https://doi.org/10.1016/j.phpro.2012.03.316.
- 17. Kanawaday A, Sane A. Machine learning for predictive maintenance of industrial machines using IoT sensor data. 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), 2017: 87–90, https://doi.org/10.1109/ICSESS.2017.8342870.
- 18. Karpenko M, Sepehri N. Neural network classifiers applied to condition monitoring of a pneumatic process valve actuator. Engineering Applications of Artificial Intelligence 2002; 15(3): 273–283, https://doi.org/10.1016/S0952-1976(02)00068-4.
- 19. Kiangala K S, Wang Z. Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts. The International Journal of Advanced Manufacturing Technology 2018; 97(9): 3251–3271, https://doi.org/10.1007/s00170-018-2093-8.
- 20. Kolokas N, Vafeiadis T, Ioannidis D, Tzovaras D. Forecasting faults of industrial equipment using machine learning classifiers. 2018 Innovations in Intelligent Systems and Applications (INISTA), 2018: 1–6, https://doi.org/10.1109/INISTA.2018.8466309.
- 21. Lipol L S, Haq J. Risk analysis method: FMEA/FMECA in the organizations. International Journal of Basic & Applied Sciences IJBASIJENS 2011; 11(05): 9.
- 22. Lu B, Durocher D B, Stemper P. Predictive maintenance techniques. IEEE Industry Applications Magazine 2009; 15(6): 52–60, https://doi.org/10.1109/MIAS.2009.934444.
- 23. Martins A B, Torres Farinha J, Marques Cardoso A. Calibration and Certification of Industrial Sensors – a Global Review. WSEAS Transactions on Systems and Control 2020; 15: 394–416, https://doi.org/10.37394/23203.2020.15.41.
- 24. Organisation internationale de normalisation, Commission électrotechnique internationale, Association française de normalisation. International Standart - Failure modes and effects analysis (FMEA and FMECA) - EC 60812:2018. 2018.
- 25. Paolanti M, Romeo L, Felicetti A et al. Machine Learning approach for Predictive Maintenance in Industry 4.0. 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2018: 1–6, https://doi.org/10.1109/MESA.2018.8449150.
- 26. Parida A, Kumar U. Maintenance Productivity and Performance Measurement. In Ben-Daya M, Duffuaa SO, Raouf A et al. (eds): Handbook of Maintenance Management and Engineering, London, Springer: 2009: 17–41, https://doi.org/10.1007/978-1-84882-472-0_2.
- 27. Rafiee J, Arvani F, Harifi A, Sadeghi M H. Intelligent condition monitoring of a gearbox using artificial neural network. Mechanical Systems and Signal Processing 2007; 21(4): 1746–1754, https://doi.org/10.1016/j.ymssp.2006.08.005.
- 28. Rahmati S H A, Ahmadi A, Govindan K. A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach. Annals of Operations Research 2018; 269(1): 583–621, https://doi.org/10.1007/s10479- 017-2594-0.
- 29. Ran Y, Zhou X, Lin P et al. A Survey of Predictive Maintenance: Systems, Purposes and Approaches. arXiv:1912.07383 [cs, eess] 2019.
- 30. Sajid S, Haleem A, Bahl S et al. Data science applications for predictive maintenance and materials science in context to Industry 4.0. Materials Today: Proceedings 2021; 45: 4898–4905, https://doi.org/10.1016/j.matpr.2021.01.357.
- 31. Sheu D D, Kuo J Y. A model for preventive maintenance operations and forecasting. Journal of Intelligent Manufacturing 2006; 17(4):441–451, https://doi.org/10.1007/s10845-005-0017-6.
- 32. Tian Z. An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing 2012; 23(2): 227–237, https://doi.org/10.1007/s10845-009-0356-9.
- 33. Wang J, Li C, Han S et al. Predictive maintenance based on event-log analysis: A case study. IBM Journal of Research and Development 2017; 61(1): 11:121-11:132, https://doi.org/10.1147/JRD.2017.2648298.
- 34. Yan J, Meng Y, Lu L, Li L. Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance. IEEE Access 2017; 5: 23484–23491, https://doi.org/10.1109/ACCESS.2017.2765544.
- 35. Yeh R H, Kao K-C, Chang W L. Preventive-maintenance policy for leased products under various maintenance costs. Expert Systems with Applications 2011; 38(4): 3558–3562, https://doi.org/10.1016/j.eswa.2010.08.144.
- 36. Uygun Y. Industry 4.0: Principles, Effects and Challenges – Nova Science Publishers: 2020 https://books.google.pt/books/about/Industry_4_0.html?id=pkExzgEACAAJ&redir_esc=y
- 37. J. Imaging | Free Full-Text | Real-Time Quality Control of Heat Sealed Bottles Using Thermal Images and Artificial Neural Network | HTML. [https://www.mdpi.com/2313-433X/7/2/24/htm].
- 38. EN 13306:2017 - Maintenance - Maintenance terminology. [https://standards.iteh.ai/catalog/standards/cen/5af77559-ca38-483a-9310-823e8c517ee7/en-13306-2017].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4bc0750-5049-43b3-9c10-12dd4177865c